
DICTIONARY OF MODERN SLOVENE: PROBLEMS AND SOLUTIONS10

 Bojan Klemenc, Marko Robnik-Šikonja, Luka Fürst, Ciril Bohak and Simon Krek

Technological Design
of a State-of-the-art
Digital Dictionary
Bojan Klemenc, Marko Robnik-Šikonja, Luka Fürst,
Ciril Bohak and Simon Krek

Abstract
An important building block of a state-of-the-art digital Slovene language dic-
tionary is its technological framework, which is briefly presented in this paper.
We view the dictionary as a multi-tier architecture with a presentation tier, a
middle application tier (a back-end application system with a component for
semi-automatic data extraction), and a data tier. In their natural form, the
language data are multidimensional. In a printed dictionary, there is just the
presentation tier, and thus many relations contained in the underlying data
are difficult to access or are even lost. By contrast, in electronic dictionaries
there are no such restrictions. We can preserve the data in all its complexity
and present it in various ways, since there is a distinction between the data
and their presentation. This separation is the key factor in integrating various
data sources (different corpora and external databases) into a unified database.
Various users or programs can query different parts of the database based on
their interests, and the presentation tier displays or returns the data at different
levels of granularity. For each tier, we present the structure and review some
of the technological considerations, which guarantee good extensibility, reli-
ability, and adaptability of the final solution.

Keywords: digital dictionary, multi-tier software architecture, presentation
layer, relational database, data extraction

11

TECHNOLOGICAL DESIGN OF A STATE-OF-THE-ART DIGITAL DICTIONARY

DICTIONARY OF MODERN SLOVENE: PROBLEMS AND SOLUTIONS

1	 INTRODUCTION

To create a modern digital dictionary of Slovene, technological considerations
are no less important than lexicographical ones. This paper thus focuses on the
technological aspects of such a dictionary. In particular, we first describe the core
components of a modern digital dictionary, and then outline some ideas for its
implementation. When designing a digital dictionary it is now crucial to consider
the issues of sustainability, scalability, adaptability, and reliability.

Early implementations of digital (or rather digitized) dictionaries were, from a
data-modelling perspective, a more or less direct mapping of the existing paper-
based dictionaries to the digital form (cf. Urdang 1984; Boguraev and Briscoe
1989; Hajnšek-Holz 1993; Krek 2014b). Specifically, dictionary entries, together
with their hierarchical organization and tags, were stored in formats such as XML
(eXtensible Markup Language) files or, in case of web dictionaries, HTML (Hyper-
Text Markup Language) files. In the latter case, the logical structure of a dictionary
entry is intertwined with its presentation (appearance). By contrast, an XML dic-
tionary entry specifies only the structure of the entry, whereas its presentation is
generated using template-based transformations. Such templates may be defined
by, for example, the CSS (Cascading Style Sheets) markup language. In the case of
XML, we thus have a basic separation between the data and their presentation.
The text of a dictionary entry may also contain references to other dictionary
entries or their components.

The search queries supported by digitized versions of paper-based dictionaries are
typically limited to headwords, a restricted set of elements (usually those speci-
fied in XML), and general text search. Search results are always presented in the
same way: a dictionary entry (or perhaps several entries) that match(es) the query,
possibly with highlighted portions of the matching text. Unfortunately, it is im-
possible to obtain a query-specific presentation of search results, since the organi-
zation of the dictionary data supports only a fixed number of predefined search
result views. Such an organization of the dictionary data (and entries) is natural
when dealing with a medium such as paper, where the data have to be organized
and stored in their final, permanent form. However, dictionaries designed for
digital media do not suffer from this physical limitation. Therefore, in designing
a digital dictionary, we have to think beyond paper limitations and beyond static
data structures, as the data have to be stored in their natural multidimensional
form. Based on the desired queries, the data then have to be suitably filtered, rear-
ranged, and presented.

It is therefore crucial to separate the presentation of the data from the data them-
selves when producing a digital dictionary. In this manner, the data can be stored

12

Bojan Klemenc, Marko Robnik-Šikonja, Luka Fürst, Ciril Bohak and Simon Krek

DICTIONARY OF MODERN SLOVENE: PROBLEMS AND SOLUTIONS

in their entire complexity and presented from different viewpoints and at dif-
ferent levels of granularity. Technologically, it is thus important to separate the
implementation of a digital dictionary into the presentation tier (or front end) and
the data tier (or back end). The user does not have direct access to the data tier;
he or she interacts with the data only through the presentation tier. The presenta-
tion tier presents the dictionary data to the user, intercepts the user’s queries in
the broad sense of the word (mouse clicks, search queries, etc.), and visualizes
the results of the queries. The third component is the so-called application tier
(or intermediate tier), whose role is to connect the data and presentation tiers.
In particular, the application tier converts queries at the presentation tier into a
form that can be used to retrieve the corresponding data from the data tier. The
application tier then filters and reorganizes the retrieved data and forwards them
to the presentation tier.

Figure 1: Architecturally, a digital dictionary is divided into three tiers: the presen-
tation tier, the intermediate application tier, and the data tier. The user interacts
solely with the presentation tier (through the webpage or mobile applications),
which presents suitably selected and processed data from the data tier. The role of
the intermediate tier is to connect the presentation tier and the data tier and to
make it possible to fill the dictionary database from external sources.

We thus obtain a three-tier architecture (Figure 1), in which the user is only able to
interact with the upper (presentation) tier, whereas the intermediate (application)

13

TECHNOLOGICAL DESIGN OF A STATE-OF-THE-ART DIGITAL DICTIONARY

DICTIONARY OF MODERN SLOVENE: PROBLEMS AND SOLUTIONS

tier and lower (data) tiers are invisible. Incidentally, the application and data tiers
may be collectively called the back end. The fact that the architecture of the system
is divided into multiple tiers makes it possible for individual parts to be relatively
independent of each other, and higher tiers interact with lower ones through pre-
defined programming interfaces. Consequently, a given tier can be replaced with
another without having any negative effect on the other tiers. In addition, the
separation of the presentation tier from the database makes it possible to integrate
various dictionaries and sources. The idea is to have a single unified database and
multiple “views” at the presentation tier, which can visualize different subsets of
the database, e.g., written language, spoken language, modern language, archaic
language, regional varieties, different combinations of criteria, and so on. At the
presentation tier, we might also present different user interfaces to different types
of users. For example, a high school student who uses the dictionary to write an
essay might want to interact with a completely different interface (with different
data and a different hierarchical structure of the data) than a linguist or a lexicog-
rapher. Although all users access the same database, there may thus be substantial
differences in the level of granularity of the presented data and in the possibility
of reading, writing, or modifying them. For instance, a lexicographer is allowed
to modify the dictionary data, while other users are not.

The dictionary database may be updated both by the manual work of a lexicog-
rapher or by crowdsourcing (cf. Kosem et al. 2013a; 2013b). In addition, the
system enables automatic extraction of the dictionary data from external sources,
such as corpora. Data extraction is a repetitive rather than one-time process, since
the language and hence the corpora constantly change. Therefore, in addition to
serving as a connection between the presentation tier and data tier, the interme-
diate application tier also has to connect to external sources and make the initial
data extraction process possible.

Technologically, the dictionary can be divided into four main components, which
we briefly describe below:

1.	 The database, being the most important component of the data tier,
is implemented as a unified relational database. Its role is to store the
language data and the information extracted from the corpora.

2.	 The back-end application system (the intermediate application tier) in-
tegrates the entire solution and contains programming interfaces for in-
teracting with the presentation modules (the web application and mobile
applications) and programming code for interacting with the database.

3.	 The automatic data extraction component is, in fact, part of the in-
termediate application tier. However, because of its complexity, we will
deal with it separately. Its role is to fill and update the database with

14

Bojan Klemenc, Marko Robnik-Šikonja, Luka Fürst, Ciril Bohak and Simon Krek

DICTIONARY OF MODERN SLOVENE: PROBLEMS AND SOLUTIONS

the data extracted from external corpora and databases. As part of the
lexicographical process, the automatic extraction of data is presented in
Gantar et al. (2015a).

4.	 The presentation tier, both in the form of a web portal and in that of ap-
plications for different mobile platforms (e.g., Android, Apple iOS, and
Windows Phone), presents the lexicographical data to different types of
users, makes it possible to search and browse the data, and facilitates data
corrections and updates as part of the lexicographical process (ibid.). The
presentation tier is not used only by people, and thus it also includes a
programming interface through which other computer systems can in-
teract with the dictionary.

It makes sense for the implementation of the dictionary to be based on open-
source solutions to the greatest extent possible. This is because such solutions are
now sufficiently powerful to support advanced operations and a high number of
users. The division of the system into tiers enables us to select the most appropri-
ate technology for each and then replace individual tiers if the need arises. The
same principle holds for individual components. For example, the component for
the automatic extraction of data is separated from other components at the appli-
cation tier; if necessary, it communicates with them via programming interfaces.

The communication between individual tiers is based on the client-server para-
digm. The client sends a request to the server, and the server replies with the
appropriate response. This approach makes it possible for clients within the dic-
tionary system to have comparatively modest demands for memory and process-
ing power, since the data are mostly stored and processed on the server, whereas
the client (at the presentation tier) merely displays the results of the user’s query.
Lower computational demands imply a lower energy consumption, which in
turn enables the use of the dictionary on less powerful mobile devices, provided
that they have a data connection to the server. Since the data in the database
are regularly updated, the users always have access to the most up-to-date ver-
sion. Such an architectural solution does not imply that the clients and servers
have to be strictly separated; however, if they are installed on the same physical
device, the database or a part thereof is replicated, and so we have to ensure that
the individual copies of the database are synchronized (typically with one of the
canonical copies of the database). To illustrate the usefulness of such a solution,
let us note that (even on mobile devices) the dictionary can be used without an
Internet connection.

The multi-tier and modular structure enables us to build, evaluate, and test indi-
vidual components of the dictionary in parallel. However, the necessary prereq-
uisite for such an approach is that the connections between the individual tiers,
such as programming interfaces, are well defined in advance.

15

TECHNOLOGICAL DESIGN OF A STATE-OF-THE-ART DIGITAL DICTIONARY

DICTIONARY OF MODERN SLOVENE: PROBLEMS AND SOLUTIONS

2	 THE DATA MODEL AND THE DATABASE

A unified database and a separate presentation tier make it possible to integrate
dictionaries and sources that were previously isolated. To build a suitable unified
database, we first have to define an appropriate data model that will be able to store
integrated data from various existing and newly-formed databases. Besides this, the
data model has to support a broader set of queries, and has to cover those that were
being executed on the existing databases, and enable additional queries on the inte-
grated data. We also have to pay attention to the fact that the integration increases
the quantity of the stored data that (still) has to be quickly accessible.

Table 1 shows the data sources, their inclusion into the unified database, and the
existing format of individual lexicographical data that will be displayed in the
user interface. The data can either be included directly in the database (YES in
Table 1) or be accessible via a link to some external source, such as corpora (NO
in Table 1). For a more detailed discussion on integrated dictionary sources and
corpora, see Krek et al. (2013).

Table 1: Types of displayed data, their sources, their inclusion into the data-
base, and their current format. The labels of formats are as follows: TEI (Text
Encoding Initiative), LMF (Lexical Markup Framework), and LBS (Leksikalna
baza za slovenščino – Slovene Lexical Database).

Displayed data Source of the data Inclusion into
the database

Current format

phrases extracted data YES, as the
lexicon

XML LBS

collocations -
concordances

Gigafida (Slovene
language corpus)

NO, a
reference to the
concordancer

-

parts of speech Sloleks (Slovene
morphological lexicon)

YES, as the
lexicon

XML LMF

synonyms and
translations into
selected foreign
languages

SloWNet (Slovene
semantic lexicon)

YES, as the
lexicon

XML DEBDIC

history, words IMP (Corpus of the older
Slovene language)

YES, as the
lexicon

XML TEI

history -
concordances

IMP (Corpus of the older
Slovene language)

NO, a
reference to the
concordancer

-

16

Bojan Klemenc, Marko Robnik-Šikonja, Luka Fürst, Ciril Bohak and Simon Krek

DICTIONARY OF MODERN SLOVENE: PROBLEMS AND SOLUTIONS

Displayed data Source of the data Inclusion into
the database

Current format

speech, words Gos (Corpus of the
spoken Slovene language)

YES, as the
lexicon

(XML TEI -
implementation
in the project)

speech -
concordances

Gos (Corpus of the
spoken Slovene language)

NO, a
reference to the
concordancer

-

visualization of
relationships

extracted data YES XML LBS

multimedia WikiMedia, ... YES, also as
external sources

different
multimedia
formats

lexicographical
statistics

Gigafida (Slovene
language corpus)

YES -

Sources in the textual form are usually stored in XML or plain text files. In addi-
tion to the contents, the XML files also store the structural data. Since different
types of data have different structures (this is in part due to the type of contents
they represent), it does not make sense to keep the XML structure in the data-
base. (However, there are some exceptions where it is reasonable to keep smaller
XML parts, such as emphases in descriptions.) Being a hierarchical form of data
storage by its nature, XML is not very suitable for storing non-hierarchical data,
such as dictionary data. However, owing to its hierarchical layout, XML is ap-
propriate for serialization, and an XML file itself contains the data about the
structure of the underlying data. For these two reasons, XML can be used for data
interchange. (In the case of the dictionary, the data is interchanged with external
sources and with external applications that interact with the dictionary through
programming interfaces.)

It is important to consider relationships between individual records when organ-
izing the data in the dictionary database. These relationships can be modelled
by graph or relational databases. In terms of performance (Vicknair et al. 2010),
both types of databases are able to handle large quantities of data that are typically
associated with a dictionary. Several query languages have been defined for both
graph and relational databases. For example, there are SPARQL (SPARQL Query
Language for RDF) and several non-standard solutions (Wood 2012; Haase et al.
2004) for graph databases, and SQL and SQL/PSM for relational ones. Graph
databases are highly flexible, since they do not have an explicitly defined struc-
ture, and are thus suitable for data with a variable structure. On the other hand,
relational databases have an explicitly defined structure, which compels us to
define the data model in advance. Besides that, we also have to consider which

17

TECHNOLOGICAL DESIGN OF A STATE-OF-THE-ART DIGITAL DICTIONARY

DICTIONARY OF MODERN SLOVENE: PROBLEMS AND SOLUTIONS

database queries are possible and which are not. Nevertheless, even the relational
data model can be adapted in such a way that part of the structure is stored as
data (Newman 2007).

Multimedia sources are stored as references in the database. To facilitate search
queries, they are appropriately tagged.

Owing to the maturity of the corresponding technological solutions, the diction-
ary database is designed as a relational database. A simplified conceptual model
of the database core is shown in Figure 2.

Figure 2: A simplified conceptual model of the database core, displayed in
Martin’s notation. This model serves as the starting point for the design of the
entire database.

A lexical unit conveys a single meaning or several meanings, which can be in dif-
ferent relationships with one another. Lexical units can take the form of lexemes,
phrases, phrasemes, or even parts of words, and can also be in different relation-
ships with each other. For lexical units with a certain meaning, we store (aggre-
gated) data about the sources in which they have been found.

is in relationship

is in

is in relationship

meaning

corpus

lexical unit

meaning of lexical unit

18

Bojan Klemenc, Marko Robnik-Šikonja, Luka Fürst, Ciril Bohak and Simon Krek

DICTIONARY OF MODERN SLOVENE: PROBLEMS AND SOLUTIONS

The data model is designed in a sufficiently general way to enable the set of
stored data to be extended to multiple language varieties and to treat these
varieties equally. Moreover, when designing the data model we have to pay
attention to the level of granularity of the data (a lower level of granularity
means that we store a greater amount of aggregated data or lower-precision
data, which in turn implies that it will not be possible to answer certain que-
ries). Granularity is important both for data extraction and filling the database,
since it determines what data have to be extracted and what extra amount of
work will have to be carried out, e.g., in crowdsourcing or in the final process-
ing performed by a lexicographer. For example, if, in the process of extracting
data for lexical units, we do not record the time span during which individual
lexical units occur, it will not be possible to restrict search queries to the lexicon
from a given time span.

Several database management systems are available, and since relational databases
are now well-established, there are a number of open-source solutions, although
not all of these have the necessary functionalities. For our purposes, the database
management system also has to support so-called recursive queries and SQL/PSM
(procedures stored in the database). An example of such a system is PostgreSQL.1

3	 THE BACK-END APPLICATION SYSTEM

The back-end application system serves as a link between the data and presenta-
tion tiers. Automatic data extraction is also part of the application system; how-
ever, owing to its complexity, we deal with it in a separate section. The role of
the application system is to (re)format data requests received from the presenta-
tion level and to forward the requests to the database or external sources, such
as corpora or external databases. Subsequently, the application system processes
and filters the responses from the database or external sources and sends them
back to the presentation level.

It is important to distinguish between the data themselves and additional re-
strictions and rules defined over the data, as these restrictions and rules can also
change over time. For instance, collocations associated with individual lexical
units can be recorded for a long time span (e.g., several centuries), but we might
want to impose a rule to display only collocations occurring within, say, the last
ten years. In this case, not only the data that match the rule but also the rule itself
changes over time. The application tier has to make it possible to define such
rules, and it has to formulate database queries based on the imposed rules and
restrictions. This implies that we have to be restricted to time spans defined by
1	 www.postgresql.org

19

TECHNOLOGICAL DESIGN OF A STATE-OF-THE-ART DIGITAL DICTIONARY

DICTIONARY OF MODERN SLOVENE: PROBLEMS AND SOLUTIONS

the imposed rules and through the user interface, and we should be able to define
the desired time span explicitly.

The application system provides its services in the form of a programming inter-
face. An advantage of having separated tiers is that the source code of the applica-
tion tier may be changed (completed, corrected, or improved) without affecting
the programming interface, which means that the clients at the presentation level
(the web and mobile applications) can still make use of the services without any
modifications being needed. In addition to the clients at the presentation tier,
the access to the programming interface has to be provided to other computer
systems that would like to retrieve the data. We also have to enable connectivity
in the sense of a semantic web (i.e., linked data).

Since the presentation and application tiers communicate according to the client-
server paradigm, another important task of the application tier is to prepare the
data in such a way that the clients receive only those data that they truly need,
without any unnecessary data transfers.

4	 AUTOMATIC DATA EXTRACTION

As shown in Table 1, the data in the dictionary database are extracted from dif-
ferent external sources. There are two main problems associated with data extrac-
tion: first, how to cope with the sheer quantity of the data in the external sources
(for instance, the Gigafida corpus currently contains approximately 1.2 billion
words), and second, how to ensure the quality of the extracted data. In addition,
data extraction is not completed when the dictionary is published; rather, it is an
ongoing process, since the language changes over time.

In the first stage, data are extracted automatically, and the results are then validat-
ed. Reliable data are written directly into the database, while those with a lower
degree of reliability undergo a further filtering and manual processing stage.

To implement the automatic data extraction stage, we build upon the data
extraction approaches developed for the purpose of creating the Slovene Lexical
Database (Leksikalna baza za slovenščino in Slovene) within the project Com-
munication in Slovene (Sporazumevanje v slovenskem jeziku in Slovene) (Gantar
2009; Gantar and Krek 2011), augmenting these approaches with more recent
findings and technologically improved tools. For the entire lexicon that will be
visualized, the following data can be automatically extracted: the headword in
the base form (lemma), its part of speech, its frequency in the corpus, its gram-
matical relationships (which, in the database, are transformed into patterns),

20

Bojan Klemenc, Marko Robnik-Šikonja, Luka Fürst, Ciril Bohak and Simon Krek

DICTIONARY OF MODERN SLOVENE: PROBLEMS AND SOLUTIONS

and the corresponding collocations together with their examples. As an im-
portant step in the process of automation, the so-called word sketch grammar
within the Sketch Engine2 tool has already been created. With the help of a
designated software script that contains the descriptions of all relevant gram-
matical relationships for extracting collocations, we can retrieve a set of good
candidates for usage examples of individual headwords within a realistic textual
environment (Kosem et al. 2011). The software script makes use of the so-
called GDEX (abbreviation for good dictionary examples) configuration, which
defines the properties of such examples.

In the second stage of the data extraction process, the data are manually inspected
before being included in the dictionary database. This work is carried out with the
help of crowdsourcing, in the context of which the users label possible anomalies
or errors in the data. Eventually, the data are formatted and confirmed by a lexi-
cographer. The errors that have been confirmed to originate from the automatic
extraction process are labelled and fed back to the data extraction system, which
in turn learns from the errors using machine learning techniques, and thereby
improves its performance.

Automatic data extraction belongs to the back-end system. Both the partially
and completely processed data are written into the dictionary database. In the
database, the data that have not yet been completely processed are appropriately
tagged, which means that they may be either displayed or not displayed at the
presentation tier. For example, both a lexicographer and general user access the
same database, but the lexicographer will, besides interacting with a different user
interface, also see the data that have not yet been completely processed and will
be able to process them. The users participating in crowdsourcing have their own
view of the data too. For the purpose of crowdsourcing, we can use existing plat-
forms such as PyBossa,3 which simplify creation of crowdsourcing applications
(cf. Fišer et al. 2015).

5	 THE PRESENTATION TIER: THE WEB PORTAL
AND MOBILE APPLICATIONS

When designing the presentation tier, and consequently also the user interfaces
for different applications, we have to focus primarily on user experience. The
unified visual design of the applications is no less important. One of the goals of
the presentation tier is to display the data on the web pages and popular mobile
platforms in a consistent way.

2	 http://www.sketchengine.co.uk/
3	 http://pybossa.com/

21

TECHNOLOGICAL DESIGN OF A STATE-OF-THE-ART DIGITAL DICTIONARY

DICTIONARY OF MODERN SLOVENE: PROBLEMS AND SOLUTIONS

When developing mobile applications it is advisable to take the so-called hybrid
approach, which is the best way to port applications between different mobile
platforms while ensuring the maximum reusability of individual components. A
reasonable option to develop the basic functionality is to use the HTML5 and
JavaScript technologies. The application core developed in this way can then be
embedded into the application frameworks of the individual mobile platforms
that have to be supported. Such a development is supported by numerous open-
source tools, e.g., PhoneGap4, which is based on the Apache Cordova5 platform.
The hybrid approach facilitates and accelerates the development of applications
for all supported platforms. In addition, it ensures a unified presentation tier on
all platforms and facilitates the upgrading of the applications. The core of a mobile
application created in such a way may serve as a basis for developing a web portal.

For the purposes of achieving recognisability and a consistent user experience, it
is advisable to design a unified visual identity for the entire user interface. It is
important to follow the WCAG 2.0 (Web Content Accessibility Guidelines 2.0)
standard and thereby ensure that the applications are also suitable for users with
special needs.

6	 CONCLUSION

In the technological design of a modern digital dictionary Slovene, a key concept
is the separation of the presentation of the data from the data themselves. By fol-
lowing this route, the data can be stored in their entire complexity and presented
from different viewpoints and at different levels of granularity. The dictionary is
designed as a three-tier architecture, consisting of a presentation tier, intermedi-
ate application tier, and data tier. The task of the presentation tier is to retrieve
the requested data from the data tier and display them to the user. Between the
presentation and data tiers there is the intermediate application tier, which con-
verts the user queries from the presentation tier into a form suitable for a direct
execution in the data tier (on the database), and transforms the data retrieved
from the data tier into the form required by the presentation tier. Another role of
the intermediate application tier is the automated extraction of data from vari-
ous corpora and external data sources. Since the language is constantly evolving,
automated data extraction is an ongoing process that also involves lexicographers,
who access the data through the suitable views at the presentation tier.

The separation between the data and their representation plays a key role in the
integration of different sources (corpora and external data sources) into a unified

4	 http://phonegap.com/
5	 https://cordova.apache.org/

22

Bojan Klemenc, Marko Robnik-Šikonja, Luka Fürst, Ciril Bohak and Simon Krek

DICTIONARY OF MODERN SLOVENE: PROBLEMS AND SOLUTIONS

database. Different users, as well as external computer systems, may retrieve the
desired data from the database using queries forwarded from the presentation
tier. The presentation tier then also displays the retrieved data.

The main advantage of the multi-tier architecture is the independence of indi-
vidual tiers, as long as the programming interfaces through which higher tiers
interact with lower ones are appropriately defined. At each tier, we can therefore
choose the most suitable implementation technologies, and a change at one tier
does not affect others, as long as the programming interface remains intact.

We have followed the above-mentioned principles in our proposed implementa-
tion of a modern dictionary Slovene. In particular, we have divided its techno-
logical design into four components: a database (the data tier), a back-end ap-
plication system with a component for partially automated data extraction (both
belong to the intermediate application tier, but the data extraction component
is treated separately because of its complexity and importance for the entire sys-
tem), and a presentation component with the web portal and mobile applications
(the presentation tier).

The technological design of the dictionary that we have described in this pa-
per ensures that the solution to be built upon will serve as a central web-based
language portal involving all levels of the Slovene language vocabulary. The key
components, which enable the sustainable development of both the web portal
and mobile applications, will be made available for further improvement under
a free software license.

