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Preface

The following pages contain a representative selection of tasks and problems
which appeared at problem sessions, midterms and final (computational) ex-
ams at the course Mathematics 1 for the first year students of master’s study
programme at the Faculty of Computer and Information Science, University of
Ljubljana.

In addition to the two authors, Polona Oblak also contributed many prob-
lems and ideas for problems. Uroš Kozole helped with suggestions for im-
provements and a thorough inspection of the first typed solutions. The entire
text was reviewed by Polona Oblak and Žiga Virk. Of course, that doesn’t mean
that the solutions in front of you are error-free. If you find errors, please bring
them to the authors’ attention.

Individual tasks in each section are in no specific order. The idea is that
you, the reader, attempt to solve an exercise regardless of its perceived diffi-
culty. Nonetheless, the solution to each problem is linked at the right edge, via
e.g. (solution 3.17), while each solution contains a link back to the problem,
e.g. . . . to problem 3.17. While immediate reading of the solutions may seem
tempting, arriving at the solution by yourself is much more rewarding.
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Chapter 1

Linear algebra

1.1 A recollection of basic concepts

Problem 1.1 (solution 1.1, page 22)

Determine the eigenvalues and corresponding eigenvectors of the matrix

A =

 0 2 2
3 1 −3
−1 −1 3


Problem 1.2 (solution 1.2, page 23)

Determine the eigenvalues and orthonormal bases of corresponding eigenspaces
for the matrix

H =


1 1 1 0
1 0 0 1
1 0 0 −1
0 1 −1 1


Problem 1.3 (solution 1.3, page 25)

You are given an n×n matrix

A =


0 1 · · · 1
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

 ,

i.e., the adjacency matrix of a (undirected) star graph.
(a) Determine bases of N (A) and C(A), i.e., bases of the nullspace and the

column space of A.
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CHAPTER 1. LINEAR ALGEBRA 6

(b) Determine the eigenvalues and eigenvectors of A.
Hint: Why is N (A) an eigenspace of A? Why are eigenspaces of A other
than N (A) contained in N (A)⊥?

Problem 1.4 (solution 1.4, page 28)

The following is known about a symmetric matrix A ∈R4×4: A has 3 as a double
eigenvalue and it interchanges the vectors

v1 =


0
1
1
0

 and v2 =


1
0
0
1

 ,

i.e. Av1 = v2 and Av2 = v1. Find such a matrix A or prove that it does not exist.

Problem 1.5 (solution 1.5, page 29)

Let A be an n×n matrix. One way to define the exponential of the matrix A is

eA :=
∞∑
k=0

1
k!
Ak

(we substituted x ∈R with A in the Taylor series for the function ex).
(a) Prove the identity

det(eA) = etr(A)

(b) Assume A is an antisymmetric matrix, meaning AT = −A. Show that eA

is an orthogonal matrix with determinant equal to 1.

1.2 Schur decomposition, Frobenius norm, Eckart–
Young theorem

Problem 1.6 (solution 1.6, page 31)

Determine one Schur decomposition for each of the matrices

A =

6 −1 1
4 3 1
2 2 3

 and B =

 2 −1 0
0 1 0
−
√

2 −
√

2 2

 .

Problem 1.7 (solution 1.7, page 34)

Let A be an arbitrary matrix and let U and V be orthogonal matrices, so that
one can form the product UAV . Prove that the following equalities hold:
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1. ∥UA∥F = ∥A∥F,

2. ∥AV ∥F = ∥A∥F,

3. ∥UAV ∥F = ∥A∥F.

Problem 1.8 (solution 1.8, page 35)

Denote by ⟨A,B⟩F := tr(ATB) the Frobenius inner product of matrices A,B ∈
R
m×n, and denote by ∥A∥F :=

√
⟨A,A⟩F the corresponding Frobenius norm. Prove:

1. the Cauchy–Schwarz inequality, |⟨A,B⟩F| ≤ ∥A∥F∥B∥F,

2. the triangle inequality, ∥A+B∥F ≤ ∥A∥F + ∥B∥F,

3. submultiplicativity, ∥AB∥F ≤ ∥A∥F∥B∥F,

4. multiplicativity for the Kronecker product, ∥A⊗B∥F = ∥A∥F∥B∥F.

Problem 1.9 (solution 1.9, page 37)

Let I be the 2 × 2 identity matrix. Find an orthonormal basis of orthogonal
complement of I (the vector subspace I⊥ ⊆ R

2×2) with respect to the (Frobe-
nius) inner product ⟨A,B⟩F := tr(ATB).

Problem 1.10 (solution 1.10, page 37)

Find rank 1 matrices closest to the matrices

(a)

2 0 0
0 −3 0
0 0 1

, (b)
[
1 3
3 1

]
, (c)

[
2 0
0 2

]

with respect to the Frobenius norm. Are those rank 1 matrices unique?

Problem 1.11 (solution 1.11, page 40)

Prove the following:
(a) If the set {uj : j = 1, . . . , q} ⊆R

n is linearly independent, then, whenever

q∑
j=1

xj ⊗uj = 0⊗ 0 = 0 ∈Rmn

holds for vectors x1, . . . ,xq ∈ Rm, the vectors xj are necessarily zero, i.e.,
x1 = · · · = xq = 0 ∈Rm.

(b) Given linearly independent sets of vectors {vi : i = 1, . . . ,p} ⊆ R
m and

{uj : j = 1, . . . , q} ⊆R
n, the set

{vi ⊗uj : i = 1, . . . ,p ; j = 1, . . . , q} ⊆R
mn

is also linearly independent.
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Problem 1.12 (solution 1.12, page 41)

Let A ∈Rm×m and B ∈Rn×n. Show that the Kronecker sum

A⊕B := A⊗ In + Im ⊗B

has the property: Eigenvalues of A⊕B are all possible sums of the form λi +µj ,
where λ1, . . . ,λm are eigenvalues of A, and µ1, . . . ,µn eigenvalues of B.

Use this to find eigenvalues and eigenvectors of A⊕B, where

A =
[
−1 2
0 3

]
and B =

[
1 0
2 2

]
.

Problem 1.13 (solution 1.13, page 41)

Let

A =
[
2 2
2 −1

]
.

(a) Determine a diagonal matrix D and an orthogonal matrix U such that
A =UDUT.

(b) Explain why for an orthogonal matrix U the matrix U ⊗U is also orthog-
onal.

(c) Find matrices of rank 1 and 2 which are best approximations to the Kro-
necker product A⊗A with respect to the Frobenius norm.

Problem 1.14 (solution 1.14, page 43)

You are given matrices

A =
[
−2 2
2 1

]
and B =

[
−3 2
2 0

]
.

(a) Diagonalize matricesA and B. Write down both corresponding diagonal
and transition matrices.

(b) Let u be an eigenvector of A and v and eigenvector of B. Prove that u⊗v
is an eigenvector of A⊗B+A⊗I+I⊗B. Additionally, find all eigenvalues
of A⊗B+A⊗ I + I ⊗B.

(c) Find a rank 1 matrixM, which is closest to the matrix A⊗B+A⊗I +I⊗B
with respect to the Frobenius norm.

Problem 1.15 (solution 1.15, page 44)

Find the eigenvalues and corresponding eigenvectors of the matrixA⊗A+A2⊗I ,
where A is the matrix

A =
[
−1 3
3 −1

]
.
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Problem 1.16 (solution 1.16, page 45)

The objective of this exercise is to express the Sylvester matrix equation AX +
XB = C in the ‘usual’ form (Âx = b) using the vec operator and then solve this
equation.

(a) Verify that the matrix equation AX +XB = C in the unknown matrix X is
equivalent to the linear system

(BT ⊕A)vec(X) = vec(C)

in the unknown column vec(X).

(b) Let A and B be 2× 2 matrices

A =
[
−1 2
0 3

]
and B =

[
1 0
2 2

]
.

Does AX + XB = 0 posses a non-trivial solution? (You need to answer
quickly! Do not attempt to solve the corresponding linear system. . . )

(c) Find a matrix X which solves

AX +XB =
[
−2 1
2 5

]
.

Problem 1.17 (solution 1.17, page 46)

Let A ∈Rn×n be a matrix with only nonnegative eigenvalues.

(a) Prove that A is invertible if and only if all of its eigenvalues are (strictly)
positive.

(b) Assume that A is invertible. Prove that all of its eigenvalues are positive
if and only if all of the eigenvalues of A−1 are positive.

(c) Assume AT = A. Prove that there exists a matrix S, with only nonnegative
eigenvalues and S2 = A holds. We denote such matrix S as S =

√
A.

Problem 1.18 (solution 1.18, page 46)

You are given the matrix

A =

2 3 1
3 6 3
1 3 2

 .

(a) Check that A is positive semidefinite.

(b) Find all eigenvalues and corresponding eigenvectors of A.

(c) Find
√
A.
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Problem 1.19 (solution 1.19, page 47)

Find the Cholesky decomposition (A = LLT, where L is lower triangular) of the
matrix

A =

 1 2 −1
2 8 2
−1 2 6


using (recursive) algorithm below:
Write a symmetric matrix A ∈Rn×n in the block form

A1 := A =
[
a11 bT

b B

]
and define

L1 :=
[√
a11 0T

1√
a11

b In−1

]
.

Then

A1 =
[
a11 bT

b B

]
= L1

[
1 0T

0 B− 1
a11

bbT

]
LT1 .

Repeat this on the symmetric matrix A2 := B− 1
a11

bbT ∈R(n−1)×(n−1).
Let L2,L3, . . . ,Ln be the matrices obtained in repeated steps. The matrix L is
then

L = L1 ·
[
1 0T

0 L2

]
· · ·

[
In−1 0
0T Ln

]
. (1.2)

Problem 1.20 (solution 1.20, page 48)

Is any of the matrices

A =

 1 −1 5
−1 4 −5
5 −5 2

 and B =

−4 6 −2
6 −10 5
−2 5 −14


negative definite? For each negative definite matrixX ∈ {A,B} find the Cholesky
decomposition of −X.



Chapter 2

Vector spaces and linear maps

2.1 Vector spaces

Problem 2.1 (solution 2.1, page 49)

Which subsets of the vector space R
n×n are vector subspaces? Determine the

dimension of those that are.
(a) All matrices, which have 0 as the (1,2)-entry.
(b) All matrices, which have 1 as the (1,2)-entry.
(c) All matrices with integer entries, i.e., for A = [aij ] we have aij ∈ Z (for

all indices i, j).
(d) All upper-triangular matrices.
(e) All symmetric matrices; A = AT.
(f) All antisymmetric matrices; A = −AT.
(g) All invertible matrices; the subset GL(n,R) ⊆R

n×n.
(h) All matrices with determinant 0, i.e., Rn×n ∖GL(n,R).
(i) All nilpotent matrices, i.e., matrices N ∈Rn×n such that Nn = 0.
(j) All upper-triangular nilpotent matrices. (Hint: Which elements appear

on the diagonal of an upper-triangular nilpotent matrix?)
(k) All matrices with trace 0.

Problem 2.2 (solution 2.2, page 52)

Equip the open interval R+ = (0,∞) with the operation x ⊕ y := xy, and define
α ⊙ x = xα for scalars α ∈R.

(a) Show that (R+,⊕,⊙) is a vector space over R.
(b) Find a basis for (R+,⊕,⊙) and determine its dimension.

Problem 2.3 (solution 2.3, page 53)

11
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Let F be the set of all Fibonacci sequences, i.e., sequences

(an)∞n=0 = (a0, a1, a2, . . .),

where a0 and a1 are arbitrary real numbers, and an = an−1 + an−2 holds for all
n ≥ 2.

(a) Show that F is a vector space under operations

(an) + (bn) := (an + bn) and α(an) := (αan),

where α ∈R.
(b) Find a basis for F and express the usual Fibbonacci sequence (the one

with a0 = a1 = 1) in this basis.

Problem 2.4 (solution 2.4, page 54)

Let N be the matrix

N =
[
0 0
1 0

]
.

Show that the set of all real 2× 2 matrices which commute with N , i.e.,

U = {A ∈R2×2 : AN =NA},

is a vector subspace in R
2×2. Find a basis for U and determine its dimension!

Problem 2.5 (solution 2.5, page 54)

(a) Is the set U1 = {p(x) = ax+ b : a , 0, a,b ∈R} a vector subspace in the vec-
tor space of polynomials R1[x]?

(b) Is the set U2 = {p(x) : p(0) = 0} a vector subspace in the vector space of
polynomials R2[x]?

(c) Is the set U3 = {p(x) : p(0) = 1} a vector subspace in the vector space of
polynomials Rn[x]?

(d) Is the set U4 = {p(x) : p′′(3) = 0 } a vector subspace in the vector space of
polynomials Rn[x]?

Problem 2.6 (solution 2.6, page 55)

Let A be the matrix

A =
[
1 −1
0 −1

]
.

Define subsets

V := {X ∈R2×2 : XA+AX = 0} and W := {X ∈R2×2 : XAX = X}.

of the vector space R
2×2. Which of these subsets are vector subspaces of R2×2?

Why/why not? For each subset that is a vector space find its basis and deter-
mine its dimension.
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Problem 2.7

For a polynomial p(x) = ax3 + bx2 + cx + d and a square matrix A denote p(A) =
aA3 + bA2 + cA+ dI . Let A ∈R2×2 be the matrix

A =
[
1 2
2 1

]
.

Let U ⊆ R3[x] be the subset of those polynomials (of degree at most 3), for
which p(A) = 0 (the zero matrix).

(a) Show that U is a vector subspace of R3[x].
(b) Find a basis for U and determine dimU .

(Hint: If ∆A(x) is the characteristic polynomial of A, then ∆A(A) = 0.)
(c) Let q(x) = x(x2 − 2x − 3). Is the set of all 2 × 2 matrices X, for which

q(X) = 0 holds, a vector subspace of R2×2? Justify your answer!

Problem 2.8 (solution 2.8, page 55)

Let R[x] be the set of all polynomials in the indeterminate x. (Hence, R[x] con-
tains polynomials of arbitrary degrees!) Show that R[x] is a vector space for the
usual addition of polynomials and multiplication of a scalar and a polynomial.
Can you describe a basis for R[x]? Can you find a basis for the subspace

W = {p ∈R[x] : p(1) = p(−1) = 0}?

Determine dimR[x] and dimW .

Problem 2.9 (solution 2.9, page 56)

Let V ⊆ C∞(0,2π) be the set of all solutions to the differential equation

y′′ + y = 0.

Show that V is a vector subspace of C∞(0,2π). Find its basis.

2.2 Linear maps

Problem 2.10 (solution 2.10, page 56)

A map τ : R2×2→R
2×2 is given by

τ(X) =
[
1 1
1 0

]
X +X

[
1 1
1 0

]
.

(a) Show that τ is a linear map.
(b) Find the matrix corresponding to τ with respect to the standard basis
{E11,E12,E21,E22} of the vector space R

2×2.
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Problem 2.11 (solution 2.11, page 57)

For a polynomial p(x) = ax3 +bx2 + cx+d, and a square matrix A denote p(A) =
aA3 + bA2 + cA+ dI . Let A ∈R2×2 be the matrix

A =
[
1 2
2 1

]
.

(a) Show that the map given by

φ : R3[x]→R
2×2, φ(p) = p(A)

is linear and determine the matrix corresponding to φ in the standard
bases of spaces R3[x] and R

2×2.
(b) Find a basis for kerφ and determine dim(kerφ). (Hint: If ∆A(λ) is the

characteristic polynomial of A, then ∆A(A) = 0.)
(c) Let q(x) = x(x2 − 2x − 3). Is the set of all 2 × 2 matrices X, for which

q(X) = 0 holds, a vector subspace of R2×2?

Problem 2.12 (solution 2.12, page 58)

We are given vectors a = [1,1,0]T, b = [1,0,1]T, and c = [0,1,1]T in R
3, and a

linear map τ : R3→R
3 for which

τ(a) = a, τ(b) = a+b, and τ(c) = a+ c

holds.
(a) Show that {a,b,c} is a basis of R3.
(b) Find the matrix for τ in the basis B = {a,b,c}.
(c) Find the matrix for τ in the standard basis S = {i, j,k}.
(d) Where does the vector [1,1,1]T get mapped by τ?

Problem 2.13 (solution 2.13, page 59)

Let R3[x] be the vector space of polynomials p of degree at most 3.
(a) Check that the map φ : R3[x]→R

3, φ(p) := [p(−1),p(0),p(1)]T is linear.
(b) Find a basis Bkerφ for the kernel kerφ of the map φ.

(c) Find the matrix corresponding to φ in the basis {1,x,x2,x3} of R3[x] and
the standard basis of R3.

Problem 2.14 (solution 2.14, page 60)

A map ψ : R2[x]→R2[x] is given by

(ψ(p))(x) = (xp(x+ 1))′ − 2p(x).

Show that ψ is linear. Find its matrix in the basis {1,x,x2}. Find its kernel and
image.
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Problem 2.15 (solution 2.15, page 61)

Let a = [1,1]T. A map φ : R2→R
2×2 is given by

φ(x) = xaT = x [1,1].

(a) Show that φ is linear.
(b) Find the matrix corresponding to φ in the standard bases of R

2 and
R

2×2.
(c) Determine dim(kerφ) and dim(imφ).
(d) Find a basis of imφ.

Problem 2.16 (solution 2.16, page 62)

Let B = {1,1− x2,1 + x4} and V = L(B) ⊂R4[x]. Define a map

φ : V →R
2×2 by φ(p) =

[
p(−1) p′(−1)
p(1) p′(1)

]
.

(a) Show that φ is a linear map.
(b) Find the matrix Aφ corresponding to φ with respect to the basis B of V

and the standard basis of R2×2.
(c) Determine vector space bases of the kernel ker(φ) and the image im(φ).

Problem 2.17 (solution 2.17, page 63)

Assume that U and V are vector subspaces of a vector space W . Define sets:

U ×V := {(u,v) : u ∈U,v ∈ V },
U +V := {u + v : u ∈U and v ∈ V }, and

U ∩V := {w ∈W : w ∈U and w ∈ V }.

(a) Verify that U +V and U ∩V are vector subspaces of W .
(b) ‘Guess’ the appropriate vector space structure onU×V . Prove thatU×V

is actually a vector space in the guessed case! Determine dim(U × V )
from dimU and dimV .

(c) Let a map φ : U ×V →W be given by φ(u,v) = u − v. Confirm that φ is
linear. (If it turns out, that it is not, return to part (b).) Determine kerφ
and imφ.

(d) Show that the map ψ : U ∩V → kerφ, ψ(w) = (w,w) is a linear bijection,
therefore dim(U ∩V ) = dim(kerφ).

(e) Conclude that dimU + dimV = dim(U +V ) + dim(U ∩V ).



Chapter 3

Functions of several variables

3.1 Multiple integrals

Problem 3.1 (solution 3.1, page 64)

Let a vector–valued function F : R2→R
2 be given by F(r) = F(r,ϕ) = [x,y]T = x,

where

x = r cosϕ,

y = r sinϕ,

the so-called polar coordinates. Find the Jacobian matrix JF = ∂F
∂r and the Jaco-

bian determinant det(JF) of F.

Problem 3.2 (solution 3.2, page 64)

Let a vector–valued function F : R3→R
3 be given by F(r) = F(r,ϕ,z) = [x,y,z]T =

x, where

x = r cosϕ,

y = r sinϕ,

z = z,

the cylindrical coordinates. Find the Jacobian matrix JF = ∂F
∂r and the Jacobian

determinant det(JF) of F.

Problem 3.3 (solution 3.3, page 64)

Let F : R3→R
3, r 7→ x be a vector–valued function given by F(r,ϕ,θ) = [x,y,z]T,

where:

x = r cosθ cosϕ,

y = r cosθ sinϕ,

z = r sinθ,

16
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the spherical coordinates. Find the Jacobian matrix JF = ∂F
∂r and the Jacobian

determinant det(JF) of F.

Problem 3.4

Let R ≥ 0, and let F : R3→R
3 be a vector–valued function given by

F(r,ϕ,θ) = F
(
[r,ϕ,θ]T

)
=

(R+ r cosθ)cosϕ
(R+ r cosθ)sinϕ

r sinθ

 ,

the toroidal coordinates.
(a) Find the Jacobian matrix F; JF = ∂F

∂[r,ϕ,θ]T
of F.

(b) Find the determinant of that Jacobian matrix; det(JF).

Problem 3.5 (solution 3.5, page 65)

Evaluate double integrals below.

(a)
"

D
(5− x − y)dxdy, where D = [0,1]× [0,1],

(b)
"

D

y

x+ 1
dxdy, where D is given by x ≥ 0, y ≥ x in x2 + y2 ≤ 2,

(c)
"

D

sinx
x

dxdy, where D is the triangle given by 0 ≤ y ≤ x, and x ≤ π,

(d)
"

R
2
e−x

2−y2
dxdy, and use this to evaluate

∫ ∞
−∞
e−x

2
dx.

Problem 3.6

Sketch the domain of integration and evaluate the integrals.

1.
∫ 1

0

∫ x

−x
xeydy

dx,

2.
∫ 1

0

∫ y

0

y

x+ 1
dx

dy +
∫ √2

1

∫
√

2−y2

0

y

x+ 1
dx

dy.

Problem 3.7 (solution 3.7, page 66)

What is the volume of the solid bounded by the paraboloid z = 8− x2 − y2 and
the plane z = −1?

Problem 3.8 (solution 3.8, page 66)

Find the coordinates of the center of mass of the quarter of a disk given by
inequalities x2 + y2 ≤ R2, x ≥ 0, y ≥ 0 if the density at each point is equal to the
distance from the origin, i.e., ρ(x,y) =

√
x2 + y2.
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Hint: the mass of a figure D ⊆ R
2 is given by m =

!
D
ρ(x,y)dxdy, coordinates

of the center of mass are x∗ = 1
m

!
D
xρ(x,y)dxdy and y∗ = 1

m

!
D
yρ(x,y)dxdy.

Use polar coordinates.

Problem 3.9 (solution 3.9, page 67)

Determine the mass and the coordinates of the center of mass of a homoge-
neous solid (i.e., ρ(x,y,z) = 1) bounded by surfaces z2 = x2 +y2 and x2 +y2 +z2 =
4, which lies in the half-space z ≥ 0.
Hint: Use spherical coordinates.

Problem 3.10 (solution 3.10, page 68)

Determine the mass and the coordinates of the center of mass of a ball given by
inequality x2 + y2 + z2 ≤ 2z if the density at every point is equal to the distance
from the origin.
Hint: Use spherical coordinates.

Problem 3.11 (solution 3.11, page 69)

A solidD ⊆R
3 is bounded by parabolic cylinders z = 2−x2 and z = y2−2. Deter-

mine the volume and mass of this solid if the density is given by ρ(x,y,z) = y2.
Hint: Find the (orthogonal) projection of this solid onto the xy-plane, use cylin-
drical coordinates.

3.2 Local extrema of real multivariate functions

Problem 3.12 (solution 3.12, page 69)

Find and classify the stationary points of functions below.
(a) f (x,y) = x3 − 4x2 + 2xy − y2

(b) g(x,y) = xex + 2yey + 1
(c) h(x,y) = (1 + ey)cosx − yey

(d) k(x,y,z) = x3 + y3 + 3z2 − 3xyz
(e) r(x,y,z) = x2 + y2 + z2 − 2xyz
(f) u(x,y) = 4 + x3 + y3 − 3xy
(g) v(x,y) = 3x2y + y3 − 3x2 − 3y2

Problem 3.13 (solution 3.13, page 73)

Given a,b ∈Rn let f (x) = (xTa)(xTb).

(a) Evaluate ∂f
∂x and ∂2f

∂x2 .
(b) Additionally assume that a and b are nonzero and orthogonal. What is

the type of any stationary point of f in this case?
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Problem 3.14 (solution 3.14, page 74)

Find the vector x ∈ R
n for which the sum of squared distances from given

vectors a1, . . . ,ak ∈Rn is the smallest possible.

3.3 Constrained extrema

Problem 3.15 (solution 3.15, page 74)

Find the points in the domain described by the inequality

4(x − 1)2 + y2 ≤ 16,

at which the largest and the smallest values of the function

f (x,y) = 2x2 + y2

are attained.

Problem 3.16 (solution 3.16, page 76)

Let T be the triangle which is the intersection of the first octant and the plane
given by x+ y + z = 5. At which point on this triangle is the largest value of the
function g(x,y,z) = xy2z2 attained?

Problem 3.17 (solution 3.17, page 77)

Find all points on the ellipse given by

x2 − xy + y2 = 3,

which are farthest from the origin.

Problem 3.18 (solution 3.18, page 78)

Which points on the curve given implicitly by

(x2 + y2)2 = x3 + y3

are farthest from the origin?

Problem 3.19 (solution 3.19, page 78)

Find the largest and the smallest value of the function f (x,y) = xy − y + x − 1
(a) on the disk given by x2 + y2 ≤ 2,
(b) on the half-disk given by x2 + y2 ≤ 2 and x ≥ 0.

Problem 3.20 (solution 3.20, page 80)



CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 20

An ellipsoid is given by the equation

x2

a2 +
y2

b2 +
z2

c2 = 1.

A box with edges parallel to x, y, and z axes is inscribed inside this ellipsoid.
(a) What is the largest possible volume of the inscribed box?
(b) What is the largest possible surface area of the inscribed box? If you get

stuck with the general case, assume c = b, i.e., an ellipsoid of revolution.

Problem 3.21 (solution 3.21, page 84)

We are given an ℓ meters long thin rod. We cut it into 12 shorter rods, from
which a frame of a box can be assembled.

(a) How long should those shorter rods be if the box is to have the largest
possible volume?

(b) Same question as above with an additional restriction – the base rectan-
gle should have area equal to A.

Problem 3.22 (solution 3.22, page 86)

We wish to assemble a frame of a triangular prism (equilateral base triangle)
from an ℓ metres long thin rod.

(a) What should be the length of the pieces we cut our rod into, for the
prism to have the largest possible volume?

(b) What should be the length of the pieces we cut our rod into, for the
prism to have the largest possible surface area?

Problem 3.23 (solution 3.23, page 87)

Let a ∈Rn and let d ≥ 0 be a real number.
(a) Find the largest and least value of the expression aTx for a vector x ∈Rn

with prescribed length ∥x∥ = d.
(b) Explain the solution.

Problem 3.24 (solution 3.24, page 88)

Assume A ∈Rn×n, and let d be a positive real number.
(a) Find the largest and least value of f (x) = xTAx with constraint ∥x∥ = d.
(b) Find the largest and least value of f (x) = ∥x∥2 with constraint xTAx = d2

if A is symmetric positive definite.

Problem 3.25 (solution 3.25, page 89)

Let A ∈Rn×n, b,p ∈Rn, and d > 0 a real number.
(a) Minimize f (x) = ∥x∥2 with respect to ∥x−p∥ ≤ d.
(b) Minimize f (x) = ∥x∥2 with respect to Ax = b.
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(c) Minimize f (x) = ∥x∥2 with respect to ∥x−p∥ ≤ d and Ax = b.



Chapter 4

Solutions

Solution to problem 1.1, page 5: First we evaluate the characteristic polyno-
mial of A.

pA(λ) = det(A−λI) =

∣∣∣∣∣∣∣∣
−λ 2 2
3 1−λ −3
−1 −1 3−λ

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
−λ 2 2−λ
3 1−λ 0
−1 −1 2−λ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1−λ 3 0

3 1−λ 0
−1 −1 2−λ

∣∣∣∣∣∣∣∣ = (2−λ)
∣∣∣∣∣1−λ 3

3 1−λ

∣∣∣∣∣
= (2−λ)((1−λ)2 − 9) = (2−λ)(4−λ)(−2−λ).

The eigenvalues are the roots of the characteristic polynomial (indexed in de-
creasing order)

λ1 = 4, λ2 = 2, λ3 = −2.

To find the corresponding eigenvectors we determine the null space

N (A−λI) = {v ∈R3 : (A−λI)v = 0}

for each eigenvalue λ, which can be done using Gaussian elimination.

• For N (A−λ1I) we compute−4 2 2
3 −3 −3
−1 −1 −1

 ∼
1 1 1
1 −1 −1
2 −1 −1

 ∼
1 1 1
0 −2 −2
0 3 3

 ∼
1 0 0
0 1 1
0 0 0

 .

The homogenous system of equations for components of the vector [x,y,z]T

is thus simplified to

x = 0,

y + z = 0.

We can take z to be the free variable and choosing z = 1 gives an eigen-
vector for λ1 = 4:

v1 =

 0
−1
1

 .

22
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• For N (A−λ2I) we have−2 2 2
3 −1 −3
−1 −1 1

 ∼
 1 −1 −1

3 −1 −3
−1 −1 1

 ∼
1 −1 −1
0 2 0
0 −2 0

 ∼
1 0 −1
0 1 0
0 0 0

 .

The equations are x − z = 0 and y = 0. Choosing z = 1 gives

v2 =

10
1

 .

• For N (A−λ3I) we have 2 2 2
3 3 −3
−1 −1 5

 ∼
 1 1 1

1 1 −1
−1 −1 5

 ∼
1 1 1
0 0 −2
0 0 6

 ∼
1 1 0
0 0 1
0 0 0

 .

The equations are x + y = 0, z = 0. This time y is the free variable and the
choice y = 1 gives

v3 =

−1
1
0

 .

Solution to problem 1.2, page 5: We know that it will be possible to find an
orthogonal basis of R4 consisting of eigenvectors ofH becauseH is a symmetric
matrix (HT =H). Computing the characteristic polynomial for H we get

det(H −λI) =

∣∣∣∣∣∣∣∣∣∣
1−λ 1 1 0

1 −λ 0 1
1 0 −λ −1
0 1 −1 1−λ

∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣
1−λ 1 1 0

2 −λ 0 1
0 0 −λ −1

1−λ 1 −1 1−λ

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1−λ 1 1 0

2 −λ 0 1
0 0 −λ −1
0 0 −2 1−λ

∣∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣1−λ 1

2 −λ

∣∣∣∣∣ · ∣∣∣∣∣−λ −1
−2 1−λ

∣∣∣∣∣
= (−(1−λ)λ− 2)2 = (2−λ)2(−1−λ)2.

In addition to the usual rules for computing determinants (addition of multi-
ples of rows/columns to other rows/columns) we used the following rule for
determinants of block upper–triangular matrices:

det
([
A C
0 B

])
= det(A) ·det(B),

where A, B, C, and 0 are matrices of appropriate dimensions.
We therefore obtain two distinct eigenvalues λ1,2 = 2 and λ3,4 = −1 which

are both double roots of the characteristic polynomial. Since H is symmetric,
we know that it has a two-dimensional eigenspace for each eigenvalue (for
general matrices this is not necessarily the case).

Let’s proceed with eigenspaces and their bases:
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• Eigenspace for λ1,2 = 2 is the nullspace N (H − 2I). We have

H − 2I =


−1 1 1 0
1 −2 0 1
1 0 −2 −1
0 1 −1 −1

 ∼ · · · ∼

1 0 −2 −1
0 1 −1 −1
0 0 0 0
0 0 0 0

 .

Denoting a general eigenvector as v = [x1,x2,x3,x4]T, the equations for
the components of v are

x1 − 2x3 − x4 = 0 ∴ x1 =2x3 + x4,

x2 − x3 − x4 = 0 ∴ x2 = x3 + x4.

Hence an eigenvector corresponding to λ1,2 = 2 looks like

v =


2x3 + x4
x3 + x4
x3
x4

 = x3


2
1
1
0

+ x4


1
1
0
1

 .

Setting v1 = [2,1,1,0]T and v2 = [1,1,0,1]T, the set BN (H−2I) = {v1,v2} is a
basis of N (H − 2I). Note, however, that v1 and v2 are not orthogonal, so
we don’t have an orthonormal basis yet. We can obtain an orthonormal
basis via Gram–Schmidt orthogonalization:

u2 := v2 and q2 =
u2

∥u2∥
=

1
√

3


1
1
0
1

 ,

u1 := v1 −
uT

2v1

uT
2u2

u2 =


1
0
1
−1

 and q1 =
u1

∥u1∥
=

1
√

3


1
0
1
−1

 .

(Starting with index 2 produces ‘smaller’ square roots, we could just as
well start with index 1.) So, we have an orthonormal basis B′N (H−2I) =
{q1,q2} for N (H − 2I).

• Eigenspace for λ3,4 = −1 is the nullspace N (H + I). We have

H + I =


2 1 1 0
1 1 0 1
1 0 1 −1
0 1 −1 2

 ∼ · · · ∼

1 0 1 −1
0 1 −1 2
0 0 0 0
0 0 0 0

 .

Using the same notation as above, we obtain

v =


x4 − x3
x3 − 2x4
x3
x4

 = x3


−1
1
1
0

+ x4


1
−2
0
1

 .
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Again, v3 = [−1,1,1,0]T and v4 = [1,−2,0,1]T constitue a basis ofN (H+I),
but they are not orthogonal. Let’s repeat the Gram–Schmidt orthogonal-
ization:

u3 := v3 and q3 =
u3

∥u3∥
=

1
√

3


−1
1
1
0

 ,

u4 := v4 −
uT

3v4

uT
3u3

u3 =


0
−1
1
1

 and q4 =
u4

∥u4∥
=

1
√

3


0
−1
1
1

 .

Now, B′N (H+I) = {q3,q4} is an orthonormal basis of N (H + I).

Solution to problem 1.3, page 5:

(a) By performing Gaussian elimination

A =



0 1 · · · 1
1 0 · · · 0
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0


∼



1 0 · · · 0
0 1 · · · 1
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


or by simply looking at the matrix A it is clear that the column space
C(A) is spanned by the first two column vectors. We denote these two
vectors by

u =


0
1
...
1

 and v =


1
0
...
0


so we can writeC(A) = L({u,v}) and conclude that the dimension ofC(A)
equals 2.
This implies that dim(N (A)) = n − 2, which can also be seen from the
row-reduced form of A above. To determine a basis for the null space
N (A), i.e., the subspace of the solutions to the equation Aw = 0, we need
to find n− 2 linearly independent solutions to the system of equations

x1 = 0,

x2 + . . .+ xn = 0,

where the variables are the components of the vector w = [x1, . . . ,xn]T.
This system of equations can be obtained directly from the result of
Gaussian elimination above or by observing that A is a symmetric ma-
trix: We know that C(A)⊥ = N (AT) = N (A), so we can conclude that
w ∈ N (A) is equivalent to the condition that w is orthogonal to both u
and v. Expressing these conditions via equations, w ·u = 0 and w ·v = 0,
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and writing these equations component-wise produces the same equa-
tions as above.
The ‘free’ variables of this system are x3, . . . ,xn which means we can
choose n − 2 linearly independent solutions by setting xk = 1, xi = 0
for i , k for each choice of k = 3, . . . ,n. The solutions can then be written
as

w3 =



0
−1
1
0
...
0


,w4 =



0
−1
0
1
...
0


, . . . ,wn−1 =



0
−1
0
...
1
0


,wn =



0
−1
0
...
0
1


and hence one choice of a basis forN (A) is the set of vectors {w3, . . . ,wn}.

(b) The subspace N (A) is by definition the eigenspace of A for eigenvalue
λ = 0 (if N (A) is non-trivial). We can therefore immediately conclude
that we have an (n − 2)-dimensional eigenspace for eigenvalue λ = 0
spanned by the vectors {w3, . . . ,wn} defined above. Since A is a symmet-
ric matrix, we know that the algebraic multiplicity of each eigenvalue
is equal to the dimension of corresponding eigenspace. This means we
have (algebraically) two non-zero eigenvalues yet to be determined.
It is possible to obtain the remaining two eigenvalues as usual by com-
puting the characteristic polynomial directly and then solving the cor-
responding systems of equations to obtain the eigenvectors. As an alter-
native we will use the fact that A is a symmetric matrix.
Since we know that the eigenspaces of a symmetric matrix for distinct
eigenvalues are mutually orthogonal, and that the orthogonal comple-
ment of the eigenspace for λ = 0 is N (A)⊥ = C(AT) = C(A) = L({u,v}),
we can deduce that it must be possible to express the remaining two
eigenvectors as linear combinations of the column vectors u and v.
It therefore makes sense to see how the matrix A acts on the vectors u
and v. Direct computation produces the equations

Au = (n− 1)v, (1.1)

Av = u.

There are now at least two ways to proceed from here.

1. Since we know that any eigenvector w of A for any non-zero eigen-
value λ can be written as a linear combination w = xu+ yv, we can
write the eigenvector equation Aw = λw using (1.1) as follows

Aw = A(xu+ yv) = xAu+ yAv = x(n− 1)v+ yu = λ(xu+ yv).

The last equality can be rewritten as

(λx − y)u− (x(n− 1)−λy)v = 0.

Since u and v are linearly independent this implies that both coef-
ficients above must equal 0, which yields a system of equations

λx − y = 0,

x(n− 1)−λy = 0.
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By expressing y = λx from the first equation and plugging into the
second equation we get λ2 = n − 1 or λ1,2 = ±

√
n− 1. (Of course

this system also has an obvious solution for x = y = 0, but this
is not a valid solution in this case because eigenvectors must be
non-zero.) To obtain the eigenvectors for λ1,2 we have freedom to
choose any non-zero value for (say) x (because know that any non-
zero multiple of an eigenvector is also an eigenvector for the same
eigenvalue). We choose x = 1 and hence y = λ for each eigenvalue
λ1,2 to get

w1 = xu+ yv = u+
√
n− 1v =


√
n− 1
1
...
1


and

w2 = u−
√
n− 1v =


−
√
n− 1
1
...
1


as the remaining eigenvectors.

2. Another way is to use a little theory of linear maps (which are
the subject of subsequent chapters). According to (1.1), we can
view multiplication by A (restricted to the 2-dimensional subspace
C(A)) as a linear map from C(A) to C(A). Using (1.1) we can rep-
resent this map in the basis {u,v} with the 2 × 2 matrix, which we
denote by B;

B =
[

0 1
n− 1 0

]
.

Theory tells us that the eigenvalues of a linear map do not depend
on the choice of basis of the underlying vector space, which means
that the eigenvectors of B must be same as the restriction of A to
C(A). The characteristic polynomial for B is

det(B−λI) = λ2 − (n− 1) = 0

which yields λ1,2 = ±
√
n− 1. Then the bases of the eigenspaces

N (B − λ1,2I) (expressed with respect to the basis {u,v}) can be ob-
tained as usual via Gaussian elimination:

w1 =
[

1√
n− 1

]
, w2 =

[
1

−
√
n− 1

]
.

Since the components of these vectors represent coefficients with re-
spect to the basis {u,v} of C(A), we can express them as

w1 = u+
√
n− 1v , w2 = u−

√
n− 1v.
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Solution to problem 1.4, page 6: The idea: Determine all eigenvalues and

eigenvectors of A. Since A is symmetric, it can be diagonalized in an orthonor-
mal basis, i.e., , written as A = QDQT, where D is a diagonal matrix (with
eigenvalues on the diagonal) and Q is orthogonal (with properly chosen eigen-
vectors as columns). So, once we have all eigenvalues and eigenvectors, we’ll
just multiply QDQT to get A.

The simplest way to determine the remaining eigenvalues of A (apart from
the double eigenvalue 3) is to notice what happens when we add and subtract
the equations Av1 = v2 and Av2 = v1.

By adding them we get

A(v1 + v2) = v1 + v2

and by subtracting them we get

A(v1 − v2) = −(v1 − v2).

From these two equations we can directly read two eigenvectors

u1 = v1 + v2 =


1
1
1
1

 for eigenvalue λ1 = 1

and

u2 = v1 − v2 =


−1
1
1
−1

 for eigenvalue λ2 = −1.

An alternative way to determine these two eigenvectors would be similar
to that in Exercise 1.3 (b): we could write a 2 × 2 matrix that represents mul-
tiplication by A on the subspace spanned by {v1,v2} and compute λ1,λ2,u1,u2
using the usual procedure.

We also notice that the computed eigenvectors u1 and u2 are orthogonal,
which is a necessary condition for A to be a symmetric matrix. If the computed
u1 and u2 were not orthogonal we could conclude that a symmetric matrix A
with the required properties does not exist.

Now that we have all four eigenvalues λ1 = 1,λ2 = −1 (together with their
eigenvectors) and λ3,4 = 3, we only need to determine the corresponding eigen-
space for λ3,4 = 3.

The requirement that Amust be a symmetric matrix implies that the eigen-
spaceN (A−3I) must be 2-dimensional and it must be orthogonal to the eigens-
paces for λ1 and λ2. This means it is enough to find a basis for the orthog-
onal complement to L({u1,u2}) which is also 2-dimensional. The condition
x ∈ L({u1,u2})⊥ can be described by equations u1 · x = 0 and u2 · x = 0, i.e., , a
system of equations

x1 + x2 + x3 + x4 = 0,

−x1 + x2 + x3 − x4 = 0

for the components x = [x1,x2,x3,x4]T.
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Another way to obtain this system of equations is to define the matrix

U = [u1,u2] =


1 −1
1 1
1 1
1 −1


and note that

L({u1,u2})⊥ = C(U )⊥ =N (UT)

In any case, we can perform Gaussian elimination on the matrix UT to obtain

UT ∼
[
1 0 0 1
0 1 1 0

]
or on the system above to directly to obtain the conditions

x1 + x4 = 0,

x2 + x3 = 0.

By choosing the appropriate values for the ‘free’ variables x3 and x4 we can
choose the following vectors for a basis of the eigenspace N (A− 3I) =N (UT):

u3 =


0
−1
1
0

 and u4 =


−1
0
0
1

 .

By finding all the eigenvalues and eigenvectors we effectively have a diagonal-
isation of the matrix A. It remains to define the matrices

D = diag(1,−1,3,3) and P = [u1,u2,u3,u4]

and compute A = PDP −1. If we are computing this product by hand, it may
be preferable to choose an orthonormal basis of eigenvectors (in order to avoid
computing the inverse P −1) instead of {u1,u2,u3,u4}. Luckily, all these vectors
are already orthogonal, so we only need to normalize them. We can therefore
define an orthonormal basis consisting of eigenvectors by

q1 =
1
2
u1,q2 =

1
2
u2,q3 =

1
√

2
u3,q4 =

1
√

2
u4.

Now define the matrix Q = [q1,q2,q3,q4] and evaluate

A =QDQT =
1
2


3 1 1 −3
1 3 −3 1
1 −3 3 1
−3 1 1 3

 .

Solution to problem 1.5, page 6:
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(a) We will discuss the general case below. Let us first assume that A is
diagonalizable, so that we have

A = PDP −1

where D = diag(λ1, . . . ,λn) is a diagonal matrix that contains the eigen-
values of A along the diagonal. The powers Ak of the matrix A can then
be expressed as

Ak = PDP −1PDP −1 · · ·PDP −1 = PDkP −1

whereDk = diag(λk1, . . . ,λ
k
n) contains the powers of the eigenvalues along

the diagonal. We use this expression in the power series for eA.

eA =
∞∑
k=0

1
k!
Ak =

∞∑
k=0

1
k!
PDkP −1

= P

 ∞∑
k=0

1
k!
Dk

P −1 = P · diag(
∞∑
k=0

1
k!
λk1, . . . ,

∞∑
k=0

1
k!
λkn) · P −1

= P · diag(eλ1 , . . . , eλn ) · P −1

In other words, the matrix eA can be diagonalized in the same basis as A,
and its eigenvalues are simply eλ1 , . . . , eλn . Using elementary properties
of determinants, the determinant of eA can then be expressed as

det(eA) = det(P · diag(eλ1 , . . . , eλn ) · P −1)

= det(P ) ·det(diag(eλ1 , . . . , eλn )) ·det(P −1)

= det(diag(eλ1 , . . . , eλn ))

= eλ1 · · ·eλn = eλ1+···+λn

We know that tr(A) equals the sum of the eigenvalues of A which com-
pletes the proof for diagonalizable A.
For the general case we can use the Schur decomposition

A =UTU ∗

where T is an upper-triangular matrix andU is a unitary matrix (U ∗U =
UU ∗ = I). We know that the upper–triangular matrix in the Schur de-
composition of A also contains the eigenvalues of A along its diagonal.
The proof then follows the same pattern as in the diagonalizable case,
with the difference being that we work with upper–triangular matrices
instead of diagonal matrices. However the upper–triangular matrices
that appear contain the same diagonal elements as the diagonal matri-
ces above. Since the matrix elements above the diagonal do not affect
the determinant or the trace, this means the result is the same in the
end.

(b) Using the power series for eA we can directly see that(
eA

)T
= eA

T
.



CHAPTER 4. SOLUTIONS 31

For matrices A and B that commute (meaning AB = BA) it is also easy to
see that

eA · eB = eA+B.

(This is identity is not valid for matrices that do not commute!). To
show that eA is orthogonal, we need to prove that (eA)TeA = I . For an
antisymmetric matrix A we have(

eA
)T
· eA = eA

T
· eA = e−A · eA = e−A+A = e0 = I ,

sinceA and −A commute (the zero above denotes the zero matrix), hence
eA is an orthogonal matrix. IfAT = −A, then all elements on the diagonal
of A must be equal to zero, implying that tr(A) = 0. Using the identity
from (a) we then have

det(eA) = etr(A) = e0 = 1.

Solution to problem 1.6, page 6: In principle, a Schur decomposition for a

matrix A ∈Rn×n can be computed by the following algorithm.
We first find an eigenvalue λ1 for A and a corresponding normalized eigen-

vector q1, so we have Aq1 = λ1q1 with qT
1q1 = 1. Then we find an orthonormal

basis {q2, . . . ,qn} for the orthogonal complement of q1. In other words we form
a an orthogonal matrix

Q1 =
[
q1,q2, . . . ,qn

]
meaning QT

1Q1 = I , or, equivalently, qT
i qi = 1 and qT

i qj = 0 for i , j, i, j =
1, . . . ,n. Then we compute the matrix

T1 :=QT
1AQ1 =


qT

1
qT

2
...
qT
n

A
[
q1 q2 . . . qn

]
=


qT

1
qT

2
...
qT
n


[
λ1q1 Aq2 . . . Aqn

]

=


λ1qT

1q1 qT
1Aq2 . . . qT

1Aqn
λ1qT

2q1 qT
2Aq2 . . . qT

2Aqn
...

...
. . .

...
λ1qT

nq1 qT
nAq2 . . . qT

nAqn

 =
[
λ1 bT

0 A2

]

where the vector b and matrix A2 are simply the results of the computation.
This basically yields the first column of the upper triangular matrix T in the
Schur decomposition A =QTQT.

We can then repeat the procedure on the A2 block of the matrix T1 to ob-
tain (n − 1) × (n − 1) matrices Q2 and T2 and so on. The end result is the
upper-triangular matrix from the Schur decomposition together with a se-
quenceQ1,Q2, . . . ,Qn−1 of orthognal matrices of decreasing size. The orthognal
martix Q from the Schur decomposition can then be computed by

Q =Q1

[
1 0T

0 Q2

]
· · ·

[
In−1 0T

0 Qn−1

]
.
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It should be noted that we have considerable freedom during the computing
of the Schur decomposition using the described algorithm, from the choice
of the ‘first’ eiqenvalue to the choice of orthonormal basis for the orthogonal
complement of the chosen eigenvector at each step of the algorithm. When
computing by hand it is therefore worth it to use this freedom at each step with
an eye towards keeping the subsequent computations as simple as possible.

We will find the Schur decomposition of matrix B first, since it is the easier
example. The characteristic polynomial is

det(B−λI) =

∣∣∣∣∣∣∣∣
2−λ −1 0

0 1−λ 0
−
√

2 −
√

2 2−λ

∣∣∣∣∣∣∣∣ = (2−λ)
∣∣∣∣∣2−λ 0

0 1−λ

∣∣∣∣∣ = (2−λ)2(1−λ).

We choose the ‘first’ eigenvalue to be λ = 2 since we easily notice that the corre-
sponding eigenvector is simply q1 = [0,0,1]T. Using Gaussian elimination we
could also verify that q1 is also the only eigenvector for the double eigenvalue
λ = 2 which means that B is not diagonalizable, but a Schur decomposition still
exists.

Clearly, we have many choices for the orthogonal matrix Q1 which should
contain q1 in the first column. A good choice is

Q1 =

0 1 0
0 0 1
1 0 0

 .

We now compute

T1 =QT
1BQ1 =

0 0 1
1 0 0
0 1 0


 2 −1 0

0 1 0
−
√

2 −
√

2 2


0 1 0
0 0 1
1 0 0


=

0 0 1
1 0 0
0 1 0


0 2 −1
0 0 1
2 −

√
2 −

√
2

 =

2 −
√

2 −
√

2
0 2 −1
0 0 1

 .

The matrix multiplication in this case is easy since Q1 happens to be a per-
mutation matrix: multiplication by Q1 from the right just permutes column
vectors and multiplication from the left permutes row vectors.

We notice that the result T1 already happens to be an upper-triangular ma-
trix so no further steps are needed. The Schur decomposition of B is simply
B =Q1T1Q

T
1 .

Of course, a less fortunate choice of Q1 would require more computation.
For instance, a sensible choice for Q1 also seems to be

Q1 =

0 0 1
0 1 0
1 0 0

 .

This choice then results in

T1 =

2 −
√

2 −
√

2
0 1 0
0 −1 2

 =
[
λ1 bT

0 B2

]
,
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where

bT = [−
√

2,−
√

2] and B2 =
[

1 0
−1 2

]
.

As before, we can notice the eigenvalue λ = 2 of B2 (we also know this must
be an eigenvalue since the matrix QT

1BQ1 has the same eigenvalues as B) with
eigenvector q2 = [0,1]T. The (almost) only choice for Q2 is then

Q2 =
[
0 1
1 0

]
and we get

T2 =QT
2B2Q2 =

[
2 −1
0 1

]
.

(Q2 is a permutation matrix that just swaps the first and second columns/rows
of matrices.)

The final result is

T =
[
2 bTQ2
0 T2

]
=

2 −
√

2 −
√

2
0 2 −1
0 0 1


for the upper–triangular matrix of the decomposition and

Q =Q1

[
1 0T

0 Q2

]
=

0 1 0
0 0 1
1 0 0


for the orthogonal matrix, which is the same result as before.

A somewhat more involved example is matrix A. The characteristic poly-
nomial is

det(A−λI) =

∣∣∣∣∣∣∣∣
6−λ −1 1

4 3−λ 1
2 2 3−λ

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
6−λ −1 1
λ− 2 4−λ 0

2 2 3−λ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣λ− 2 4−λ
2 2

∣∣∣∣∣+ (3−λ)
∣∣∣∣∣6−λ −1
λ− 2 4−λ

∣∣∣∣∣
= (2(λ− 2)− 2(4−λ)) + (3−λ) ((6−λ)(4−λ) + (λ− 2))

= −4(3−λ) + (3−λ)(λ2 − 9λ+ 22) = (3−λ)(λ2 − 9λ+ 18)

= (3−λ)2(6−λ).

Let us find an eigenvector for λ = 6. Using Gaussian elimination we get

A− 6I ∼

0 −1 1
4 −3 1
2 2 −3

 ∼
2 2 −3
0 −1 1
4 −3 1

 ∼
2 2 −3
0 −1 1
0 −7 7

 ∼
2 0 −1
0 −1 1
0 0 0


The equations for the components of an eigenvector v1 = [x1,x2,x3]T for λ = 6
therefore reduce to

2x1 − x3 = 0,

−x2 + x3 = 0.
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If we choose x3 = 2 for the value of the ‘free’ variable we get the eigenvector
v1 = [1,2,2]T. Similarly, we can find that the only eigenvectors for the eigen-
value λ = 3 are nonzero multiples of v2 = [−1,1,4]T.

However, the eigenvector v1 seems ‘nicer’ than v2. For one, ∥v1∥ = 3 is an
integer which means we don’t need to deal with square roots when normaliz-
ing. Also, it is possible to find two mutually orthogonal vectors to v1 simply by
cleverly permuting and changing signs of its coordinates, which also ensures
they all have the same length.

After some guesswork, a sensible choice for Q1 seems to be

Q1 =
1
3

1 2 2
2 1 −2
2 −2 1


The result for T1 is

T1 =QT
1AQ1 =QT

1

2 3 5
4 3 1
4 0 1

 =

6 3 3
0 3 3
0 0 3


Since T1 happens to be an upper-triangular matrix we can terminate the algo-
rithm and write the Schur decomposition as A =Q1T1Q

T
1 .

With a little less luck with our choice for Q1, for instance if we had chosen

Q1 =
1
3

1 2 2
2 −2 1
2 1 −2


the result for T1 would be

T1 =

6 3 3
0 0 3
0 3 3


The algorithm would then require one more step. But even in this case we can
notice that T1 can be transformed into an upper-triangular matrix by the same
permutation matrix that transposes the second and third columns and rows as
in the example for the B matrix above.

Solution to problem 1.7, page 6:

1. By the definition ∥A∥F =
√

tr(ATA) and assumption UTU = I we have

∥UA∥2F = tr((UA)TUA) = tr(ATUTUA) = tr(ATA) = ∥A∥2F.

2. Here, we also need a basic property of the trace operation tr(AB) = tr(BA).

∥AV ∥2F = tr((AV )TAV ) = tr(V T(ATAV )) = tr((ATAV )V T) = tr(ATA) = ∥A∥2F.

3. This can also be proved directly by definition, or simply by combining
the previous two equalities

∥UAV ∥F = ∥U (AV )∥F = ∥AV ∥F = ∥A∥F.
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Solution to problem 1.8, page 7:

1. Define the function f (x) := ∥xA + B∥2F for x ∈ R. Clearly, f (x) ≥ 0 for all
x ∈ R. Expanding according to the definitions and the properties of the
inner product we have

f (x) = ∥Ax+B∥2F
= ⟨xA+B,xA+B⟩F
= ⟨xA,xA⟩F + ⟨xA,B⟩F + ⟨B,xA⟩F + ⟨B,B⟩F
= ⟨A,A⟩F · x2 + 2⟨A,B⟩F · x+ ⟨B,B⟩F.

This shows f (x) is a quadratic function of x. A quadratic function f (x) is
non-negative for all x ∈ R if and only if its discriminant D = b2 − 4ac is
non-positive, D ≤ 0. In our case the discriminant equals

D = 4(⟨A,B⟩F)2 − 4⟨A,A⟩F⟨B,B⟩F = 4(⟨A,B⟩F)2 − 4∥A∥2F∥B∥
2
F

Since D ≤ 0 we have (⟨A,B⟩F)2 ≤ ∥A∥2F∥B∥
2
F, hence |⟨A,B⟩F| ≤ ∥A∥F∥B∥F.

We also mention that the Cauchy–Schwarz inequality holds not only for
the Frobenius inner product but for general inner products on vector
spaces. The only properties of the inner product needed to prove the
Cauchy–Schwarz inequality were ⟨A,A⟩ ≥ 0, ⟨A,B⟩ = ⟨B,A⟩ and ⟨xA,B⟩ =
x⟨A,B⟩ for scalar values x.

2. In the proof we need the Cauchy–Schwarz inequality (notice that |⟨A,B⟩F| ≤
∥A∥F∥B∥F implies ⟨A,B⟩F ≤ ∥A∥F∥B∥F) but is otherwise quite direct.

∥A+B∥2F = ⟨A+B,A+B⟩F
= ⟨A,A⟩F + 2⟨A,B⟩F + ⟨B,B⟩F
≤ ∥A∥2F + 2∥A∥F∥B∥F + ∥B∥2F
= (∥A∥F + ∥B∥F)2.

Since ∥A+B∥F and ∥A∥F+∥B∥F are both non-negative numbers this implies
the triangle inequality.

Obviously, as is the case with the Cauchy–Schwarz inequality, the trian-
gle inequality also holds in general vector spaces with inner products.

3. First, we use the Cauchy–Schwarz inequality to obtain the following in-
equality

∥AB∥2F = ⟨AB,AB⟩F = tr((AB)TAB)

= tr(BTATAB) = tr(ATABBT)

= tr(ATA(BTB)T) = ⟨ATA,BTB⟩F
≤ ∥ATA∥F∥BTB∥F

In order to obtain ∥AB∥F ≤ ∥A∥F∥B∥F it therefore suffices to prove the in-
equality

∥ATA∥F ≤ ∥A∥2F
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To see this, we need to use a few properties of the matrix B = ATA ∈Rm×m.

Clearly, B is a symmetric matrix since BT = (ATA)T = ATA = B. Also, for
all x ∈Rm we have

⟨Bx,x⟩ = ⟨ATAx,x⟩ = ⟨Ax,Ax⟩ ≥ 0

where ⟨x,y⟩ := xTy denotes the usual Euclidean inner product. In other
words, B is a positive semidefinite matrix, so all of its eigenvalues are
non-negative.

Let λ1, . . . ,λm ≥ 0 denote the eigenvalues of B. On the one hand we have

∥A∥4F =
(
tr(ATA)

)2
= tr(B)2 =

 m∑
i=1

λi

2

=
m∑
i=1

λ2
i +

∑
i,j

λiλj

since we know that the trace of a matrix equals the sum of its eigenvalues.

On the other hand we have

∥ATA∥2F = ∥B∥2F = tr(BTB) = tr(B2) =
m∑
i=1

λ2
i

since B is a symmetric matrix and we know that if λ is an eigenvalue of B
then λ2 is an eigenvalue of B2.

Combining the last two identities and noting that
∑
i,j λiλj ≥ 0, because

all the eigenvalues of B are non-negative, we can write

∥ATA∥2F =
m∑
i=1

λ2
i

≤
m∑
i=1

λ2
i +

∑
i,j

λiλj

= ∥A∥4F

from which the desired inequality follows.

4. Using the properties of the Kronecker product we can verify the identity
directly.

∥A⊗B∥2F = tr((A⊗B)T(A⊗B))

= tr((AT ⊗BT)(A⊗B))

= tr(ATA⊗BTB)

= tr(ATA)tr(BTB)

= ∥A∥2F∥B∥
2
F.
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Solution to problem 1.9, page 7: We simply write the orthogonality condition

⟨I,A⟩F = 0 for A ∈ I⊥ in terms of the coordinates of

A =
[
x1 x2
x3 x4

]
The equation is

⟨I,A⟩F = tr(ITA) = tr(A) = x1 + x4 = 0

This gives us three ’free’ variables x2,x3 and x4, which agrees with the fact that
R

2×2 is a four-dimensional space which implies that the orthogonal comple-
ment of any non-zero element should be three-dimensional.

By choosing the appropriate values for the free variables we define three
linearly independent solutions

A1 =
[
0 1
0 0

]
, A2 =

[
0 0
1 0

]
, A3 =

1
√

2

[
−1 0
0 1

]
It is straight-forward to verify that all the matrices I ,A1,A2,A3 are mutually
orthogonal with respect to the Frobenius product. Obviously we also have
∥A1∥F = ∥A2∥F = ∥A3∥F = 1, so these three matrices form an ONB for I⊥.

Solution to problem 1.10, page 7: The Eckart–Young theorem states that the

problem of the best rank k approximation of a rank n matrix (with regard to
the Frobenius norm) can be found using the SVD matrix decomposition.

The SVD of a matrix A ∈Rn×m is a matrix factorization A =UΣV T where

Σ =


σ1 0 . . . 0
0 σ2 . . . 0
...

. . .
...

 ∈Rn×m
is a diagonal matrix containing the singular values σ1 ≥ · · · ≥ σmin(n,m) ≥ 0 along
the diagonal and

U =
[
u1, . . . ,un

]
∈Rn×n and V =

[
v1, . . . ,vm

]
∈Rm×m

are orthogonal matrices. Another useful way of writing the SVD is the sum

A =
min(n,m)∑
i=1

σiuiv
T
i .

Each term in this sum is a rank 1 matrix (every column in a matrix of the form
σuvT is clearly a multiple of u), these are the ‘singular’ matrices that give the
‘singular value decomposition’ its name.

Note also that the Frobenius norm of a ‘singular’ matrix in the decomposi-
tion equals

∥σuvT∥2F = tr((σuvT)TσuvT) = σ2tr(vuTuvT) = σ2tr(vvT) = σ2tr(vTv) = σ2

since the vectors u are v are normed, uTu = vTv = 1. Hence, the Frobenius
norm of any matrix A can be expressed in terms of its singular values as ∥A∥F =
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σ2

1 + σ2
2 + · · ·+ σ2

min(n,m). The Eckart–Young theorem states that in order to

find the best rank k approximation to a matrix A we simply pick out k of those
rank 1 ‘singular’ matrices corresponding to k largest singular values.

In order words, we form the diagonal matrix Σk which contains only the
first k singular values (assuming σ1 ≥ σ2 ≥ . . .) along the diagonal and com-
pute M = UΣkV

T. Among all rank k matrices M will then be the matrix that
minimises the value ∥A−M∥F.

A difficulty in using the Eckart–Young theorem when dealing with matrices
without numerical computation software, is that computing the SVD for gen-
eral matrices by hand can be quite tedious. For the examples below we don’t
use any general algorithm for computing the SVD because for these special
cases matrices the decomposition can often be found by simpler means.

(a) For a diagonal matrixD we almost already have the SVDD =UΣV T with
Σ =D and U = V = I , but not quite. We can write

A =

2 0 0
0 −3 0
0 0 1

 = 2 ·e1e
T
1 −3 ·e2e

T
2 +1 ·e3e

T
3 = 2 ·e1e

T
1 +3 ·e2(−eT2)+1 ·e3e

T
3 ,

i.e., we need to change the signs of the negative diagonal elements and
change the sign of the corresponding column of eitherU = I or V = I . The
best rank 1 approximation to A contains the ‘largest’ term (by absolute
value) in that sum

M = 3 · e2(−eT2) = −3 · e2e
T
2 =

0 0 0
0 −3 0
0 0 0

 .

So clerly, for diagonal matrix D, we only need to pick the diagonal entry
which is largest by absolute value. Similarly, the best rank 2 approxima-
tion contains the largest 2 diagonal entries by absolute value,

M = 2 · e1e
T − 3 · e2e

T
2 =

2 0 0
0 −3 0
0 0 0

 .

Of course, the decomposition D = IDI is not actually a SVD with posi-
tive and ordered singular values along the diagonal of D. But we could
obtain this with permutation matrices (with an additional change of sign
because of the −3) for U and V . For instance, we could also write2 0 0

0 −3 0
0 0 1

 =

 0 1 0
−1 0 0
0 0 1


3 0 0
0 2 0
0 0 1


0 1 0
1 0 0
0 0 1

 =:UΣV T

to obtain the standard SVD and then compute

M =

 0 1 0
−1 0 0
0 0 1


3 0 0
0 0 0
0 0 0


0 1 0
1 0 0
0 0 1

 =UΣ1V
T =

0 0 0
0 −3 0
0 0 0


which is the same result.
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(b) Noticing that B is a symmetric, we remember that a symmetric matrix
can be diagonalised in an orthonormal basis, meaning that we have an
eigenvalue decomposition B =QDQT withQ an orthogonal matrix. Com-
paring such an eigenvalue decomposition with the SVD, we notice that
we can almost write B = UΣV T with Σ = D and U = V = Q. Depend-
ing on the order of the eigenvalues in D we may need to permute the
columns of U and V , and change the signs of those columns in either U
or V which correspond to a negative eigenvalue, in order to obtain the
standard SVD. But as seen in the previous example, this is not essential
for the application of the Eckart–Young theorem.

To find the eigenvalue decomposition of B we first compute the charac-
teristic polynomial

det(B−λI) =
∣∣∣∣∣1−λ 3

3 1−λ

∣∣∣∣∣ = (1−λ)2 − 9 = (−2−λ)(4−λ).

In order to obtain the best rank 1 approximation we actually only need
the largest eigenvalue (by absolute value) λ = 4 along with the appropri-
ate (normalised) eigenvector. Gaussian elimination

A− 4I =
[
−3 3
3 −3

]
∼

[
1 −1
0 0

]
reduces the equations for the coordinates of the eigenvector v = [x1,x2]T

to x1 − x2 = 0. A normalised solution is

q =
1
√

2

[
1
1

]
and the best rank 1 approximation can be expressed by

M = 4 ·qqT = 4 · 1
√

2

[
1
1

]
1
√

2

[
1 1

]
=

[
2 2
2 2

]
.

(c) Since C is a diagonal matrix we can immediately write at least two differ-
ent best rank 1 approximations to C.

M =
[
2 0
0 0

]
or M =

[
0 0
0 2

]
because we have two equal ‘largest’ singular values σ1 = σ2 = 2.

In fact, the are many more solutions, because in the case of two or more
equal singular values there are also infinitely many valid singular value
decompositions. Indeed, for any orthogonal matrix Q = U = V we can
write a SVD for C as

C = 2I =Q(2I)QT

For instance, if we choose Q to be a rotation matrix

Q =
[
cos(t) −sin(t)
sin(t) cos(t)

]
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for some t ∈R, we can even explicitly compute

M =Q
[
2 0
0 0

]
QT =

[
cos(t) −sin(t)
sin(t) cos(t)

][
2 0
0 0

][
cos(t) sin(t)
−sin(t) cos(t)

]
= 2

[
cos2(t) cos(t)sin(t)

cos(t)sin(t) sin2(t)

]
to get an infinite set of different best rank 1 approximations to C (which
also includes the two previously mentioned solutions by choosing t = 0
and t = π

2 ). One can also explicitly compute that we have ∥C −M∥F = 2
for any choice of t in the expression for M above.

Solution to problem 1.11, page 7:

(a) Let’s recall, linear independence of the set {u1, . . . ,uq} is the validity of
the statement (for βj ∈R):

Whenever
q∑
j=1

βjuj = 0, we have that β1 = β2 = · · · = βq = 0.

As the reader will readily check, the implication we need to prove is
now really just a direct consequence of the definition of the Kronecker
product and linear independence of {u1, . . . ,uq}.

(b) Consider a trivial linear combination of vectors vi ⊗uj , i.e.,

p∑
i=1

q∑
j=1

αijvi ⊗uj = 0.

Notice that

p∑
i=1

q∑
j=1

αijvi ⊗uj =
p∑
i=1

vi ⊗
( q∑
j=1

αijuj

) =
q∑
j=1

( p∑
i=1

αijvi

)
⊗uj

 .

(We really just notice that middle expression, we will not use it.) Now
it follows from linear independence of uj ’s and part (a) that for every
j = 1, . . . , q we have that

p∑
i=1

αijvi = 0.

As the set {v1, . . . ,vp} is also linearly independent, we must have that
αij = 0 for every i = 1, . . . ,p and every j = 1, . . . , q, i.e., the set

{vi ⊗uj : i = 1, . . . ,p ; j = 1, . . . , q}

is linearly independent.
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Solution to problem 1.12, page 8: Assume we have eigenvalue/eigenvector
pairs for A and B, Av = λv and Bu = µu. By the definition of the Kronecker
sum and properties of the Kronecker product we have

(A⊕B)(v⊗u) = (A⊗ In + Im ⊗B)(v⊗u)

= (A⊗ In)(v⊗u) + (Im ⊗B)(v⊗u)

= Av⊗ Inu+ Imv⊗Bu
= λ(v⊗u) +µ(v⊗u)

= (λ+µ)(v⊗u).

This shows that the sum of eigenvalues λ + µ is an eigenvalue for A ⊕ B with
eigenvector v⊗u which proves the claim.

This means it is possible to compute the eigensystem of A⊕ B without ex-
plicitly computing the Kronecker sum simply by computing the eigensystems
of A and B separately and then computing all possible sums λ+µ of eigenval-
ues together with corresponding eigenvectors v⊗u. (As seen in problem 1.11,
linearly independent sets of eigenvectors of A and Bwill give us corresponding
linearly independent sets of eigenvectors of A⊕B.)

For A the characteristic polynomial is

det(A−λI) =
∣∣∣∣∣−1−λ 2

0 3−λ

∣∣∣∣∣ = (−1−λ)(3−λ).

An eigenvector for λ1 = −1 is v1 = [1,0]T and an eigenvector for λ2 = 3 is
v2 = [1,2]T.

For B we have

det(B−µI) =
∣∣∣∣∣1−µ 0

2 2−µ

∣∣∣∣∣ = (1−µ)(2−µ)

so the eigenvalues are µ1 = 1 and µ2 = 2 with eigenvectors u1 = [−1,2]T and
u2 = [0,1]T.

We can organize the pairs λi +µj ,vi ⊗uj into a table.

µj ,uj
∖
λi ,vi −1,

[
1
0

]
3,

[
1
2

]

1,
[
−1
2

]
0,


−1
2
0
0

 4,


−1
2
−2
4


2,

[
0
1

]
1,


0
1
0
0

 5,


0
1
0
2


Solution to problem 1.13, page 8:

(a) Since A is a symmetric matrix, we know it can be diagonalised with an
orthogonal matrix U . The characteristic polynomial is

det(A−λI) =
∣∣∣∣∣2−λ 2

2 −1−λ

∣∣∣∣∣ = (2−λ)(−1−λ)−4 = λ2−λ−6 = (λ−3)(λ+2).
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For λ1 = 3 a normalized eigenvector is u1 = 1√
5

[2,1]T and for λ2 = −2 we

have for example u2 = 1√
5

[−1,2]T. The matrices D and U are therefore

D =
[
3 0
0 −2

]
and U =

1
√

5

[
2 −1
1 2

]
.

Note that since A is a symmetric matrix this diagonalization readily gives
us the SVD which we can write as

A = 3 ·u1u
T
1 − 2 ·u2u

T
2 = 3 ·u1u

T
1 + 2 ·u2(−uT

2).

(b) We can directly verify that if we have UTU = I then we also have

(U ⊗U )T(U ⊗U ) = (UT ⊗UT)(U ⊗U ) =UTU ⊗UTU = I ⊗ I

which shows this is an orthogonal matrix. Similarly, we can see that if
we have a diagonalisation A = UDUT then (U ⊗U )(D ⊗D)(U ⊗U )T is a
diagonalisation for A⊗A since

(U ⊗U )(D ⊗D)(U ⊗U )T = (U ⊗U )(D ⊗D)(UT ⊗UT)

=UDUT ⊗UDUT = A⊗A.

(c) For the best rank 1 approximation of A⊗A we need the largest singular
value and corresponding singular vectors. Since A is symmetric, so is
A ⊗A, and its SVD can be obtained from the eigenvalue decomposition
which was given in (b). We only need the largest (by absolute value)
eigenvalue of A⊗A. We know that for matrices A and B the eigenvalues
of A⊗B are the products λiµj (where λi and µj are the eigenvalues of A
and B, respectively) and the eigenvectors are vi ⊗uj (where vi and uj are
eigenvectors of A and B, respectively). The largest eigenvalue of A⊗A is
therefore λ1 ·λ1 = 9 and the corresponding eigenvector is

q1 = u1 ⊗u1 =
1
5


4
2
2
1

 .

The best rank 1 approximation is therefore

M1 = 9 ·q1q
T
1 =

9
25


16 8 8 4
8 4 4 2
8 4 4 2
4 2 2 1

 .

To obtain the best rank 2 approximation to A⊗A we can add the second
largest singular matrix in the SVD to M1. The second largest eigenvalue
(by absolute value) of A⊗A is λ1λ2 = λ2λ1 = −6. The eigenspace for the
eigenvalue −6 is two-dimensional, so for the eigenvector we can take

q2 = u1 ⊗u2 =
1
5


−2
4
−1
2

 or q3 = u2 ⊗u1 =
1
5


−2
−1
4
2


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or any normalised linear combination of q2 and q3, e.g. sin(t)q2+cos(t)q3
for any choice of t ∈R. If we choose q2 we get

M2 =M1−6 ·q2q
T
2 =M1−

6
25


4 −8 2 −4
−8 16 −4 8
2 −4 1 −2
−4 8 −2 4

 =
1
5


24 24 12 12
24 −12 12 −6
12 12 6 6
12 −6 6 −3


but as in the case of Exercise 1.10 (c) we could actually construct in-
finitely many rank 2 matrices M2 with minimal value of ∥M2 −A⊗A∥F.

Solution to problem 1.14, page 8:

(a) Let’s start with the matrix A. Its characteristic polynomial is

det(A−λI) =
∣∣∣∣∣−2−λ 2

2 1−λ

∣∣∣∣∣ = λ2 +λ− 6 = (λ+ 3)(λ− 2),

which gives λ1 = −3 and λ2 = 2 as eigenvalues of A. The corresponding
eigenvectors are u′1 = [−2,1]T and u′2 = [1,2]T, which both have norm√

5. Since we’re aiming for an orthogonal transition matrix, we’ll pick

Q = [u1,u2] =
1
√

5
[u′1,u

′
2] =

1
√

5

[
−2 1
1 2

]
.

The corresponding diagonal matrix is

D =
[
−3 0
0 2

]
and we have A =QDQT.
Note that B = A− I , hence B =Q(D − I)QT and B has eigenvalues

µ1 = λ1 − 1 = −4 and µ2 = λ2 − 1 = 1

(and same eigenvectors as A).
(b) Write Au = λu and Bv = µv. Then

(A⊗B+A⊗ I + I ⊗B)(u⊗ v) = (A⊗B)(u⊗ v) + (A⊗ I)(u⊗ v) + (I ⊗B)(u⊗ v)

= (Au)⊗ (Bv) + (Au)⊗ v+u⊗ (Bu)

= (λu)⊗ (µv) + (λu)⊗ v+u⊗ (µu)

= (λµ+λ+µ)(u⊗ v),

hence u⊗v is an eigenvector of A⊗B+A⊗ I + I ⊗B corresponding to the
eigenvalue λµ+λ+µ.
For actual eigenvalues of matrices A and B we obtain

λ1µ1 +λ1 +µ1 = 5,

λ1µ2 +λ1 +µ2 = −5,

λ2µ1 +λ2 +µ1 = −10,

λ2µ2 +λ2 +µ2 = 5.
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(c) Note that the matrices A and B are symmetric, hence the matrices A⊗B,
A⊗ I and I ⊗ B are also symmetric, and so is their sum, i.e., the matrix
A ⊗ B + A ⊗ I + I ⊗ B. Singular value decomposition of this matrix can
therefore be completely determined from its eigendecomposition. In
particular, the singular values of A⊗B+A⊗ I + I ⊗B are (in decreasing
order) 10,5,5,5. The singular value 10 corresponds to the eigenvalue
λ2µ1 +λ2 +µ1 = −10 with corresponding eigenvector

u2 ⊗ v1 =
1
5

[
1
2

]
⊗
[
−2
1

]
=

1
5


−2
1
−4
2

 .

By the Eckart–Young theorem the rank 1 matrix M which is closest to
A⊗B+A⊗ I + I ⊗B with respect to the Frobenius norm is

M = −10(u2 ⊗ v1)(u2 ⊗ v1)T = −10 · 1
5
· 1

5


−2
1
−4
2

 [−2,1,−4,2]

= −2
5


4 −2 8 −4
−2 1 −4 2
8 −4 16 −8
−4 2 −8 4

 .

Solution to problem 1.15, page 8: Let us check what happens if we multiply

the matrix B = A⊗A+A2⊗I and the vector v⊗u where v and u are eigenvectors
of A, Av = λv and Au = µu:

B(v⊗u) = (A⊗A+A2 ⊗ I)(v⊗u) = Av⊗Au+A2v⊗ Iu
= λµv⊗u+λ2v⊗u = (λµ+λ2)v⊗u.

This shows that we can obtain the eigensystem of B by computing the eigen-
values λi and eigenvectors vi of A and then compute λiλj+λ

2
i to obtain all four

eigenvalues of B together with their eigenvectors vi ⊗ vj , i, j = 1,2.
The characteristic polynomial of A is

det(A−λI) =
∣∣∣∣∣−1−λ 3

3 −1−λ

∣∣∣∣∣ = (1 +λ)2 − 9 = (λ+ 4)(λ− 2).

Eigenvectors for λ1 = −4 and λ2 = 2 are v1 = [−1,1]T and v2 = [1,1]T. Then
the eigenvalues for B are µ1 = λ1(λ1 + λ1) = 32, µ2 = λ1(λ2 + λ1) = 8, µ3 =
λ2(λ1 +λ2) = −4 and µ4 = λ2(λ2 +λ2) = 8 with eigenvectors

u1 = v1⊗v1 =


1
−1
−1
1

 , u2 = v1⊗v2 =


−1
−1
1
1

 , u3 = v2⊗v1 =


−1
1
−1
1

 , u4 = v2⊗v2 =


1
1
1
1

 .
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Solution to problem 1.16, page 9:

(a) To prove this, we need the identity

vec(ABC) = (CT ⊗A)vec(B)

which holds for any matrices A, B and C for which the product ABC is
defined. Applying the (linear) operator vec to the expression AX+XBwe
can write

vec(AX +XB) = vec(AXI) + vec(IXB) = (I ⊗A)vec(X) + (BT ⊗ I)vec(X)

= (BT ⊕A)vec(X)

which holds by the definition of the Kronecker sum.

(b) We can answer this question quickly by considering the eigenvalues of
the matrix BT⊕A. Since both BT and A are upper triangular matrices, we
can read their eigenvalues off their diagonals. The eigenvalues of the Kro-
necker sum BT ⊕A are all the possible sums of the eigenvalues of BT and
A (see Exercise 1.12), i.e., 0,1,4,5. Because 0 is an eigenvalue, the matrix
BT ⊕A is singular and the homogeneous system (BT ⊕A)vec(X) = 0 has
non-trivial solutions. By (a) AX +XB = 0 also has a nontrivial solution.

(c) Here we actually compute the Kronecker sum BT⊕A to obtain the system
matrix of our equation.

BT⊕A = BT⊗I +I⊗A =


1 0 2 0
0 1 0 2
0 0 2 0
0 0 0 2

+


−1 2 0 0
0 3 0 0
0 0 −1 2
0 0 0 3

 =


0 2 2 0
0 4 0 2
0 0 1 2
0 0 0 5

 .

By the way, we can confirm this matrix does indeed have the eigenvalues
as claimed in (b). Gaussian elimination for the system (BT ⊕A)vec(X) =
vec(C) then yields the reduced form of the system

0 2 2 0 −2
0 4 0 2 2
0 0 1 2 1
0 0 0 5 5

 ∼


0 1 1 0 −1
0 2 0 1 1
0 0 1 2 1
0 0 0 1 1


∼


0 1 1 0 −1
0 1 0 0 0
0 0 1 0 −1
0 0 0 1 1

 ∼


0 1 0 0 0
0 0 1 0 −1
0 0 0 1 1
0 0 0 0 0

 .

We therefore have the equations x2 = 0, x3 = −1 and x4 = 1 for the entries
of the unknown matrix

X =
[
x1 x3
x2 x4

]
with x1 being the ‘free’ variable of the system. The general solution for
our equation can then be written as

X =
[
t −1
0 1

]
where t ∈R.



CHAPTER 4. SOLUTIONS 46

Solution to problem 1.17, page 9:

(a) A square matrix A is invertible if and only if N (A) = {0}. This is true if
and only if 0 is not an eigenvalue. Since by assumption all eigenvalues of
A are not negative, this holds if and only if they are all strictly positive.

(b) Let λ be an eigenvalue of A and v a corresponding eigenvector, Av =
λv. Since we are assuming the inverse A−1 exists, we can multiply this
equation from the left by A−1 to get

Av = λv ⇒ v = λA−1v ⇒ A−1v =
1
λ
v

since we know λ , 0 from (a). This shows λ is an (non-zero) eigenvalue of
A if and only if λ−1 is an eigenvalue of A−1. Clearly then all the eigenval-
ues λ1, . . . ,λn of A are positive if and only all the eigenvalues λ−1

1 , . . . ,λ−1
n

of A−1 are positive since inverting a number does not change its sign.

(c) A PSD matrix A (i.e., a symmetric matrix with only nonnegative eigen-
values) can be diagonalised, A =QDQT, with

D =


λ1

. . .
λn


where λ1, . . . ,λn are the eigenvalues and Q is an orthogonal matrix. Let
us define the square-root of D by

√
D :=


√
λ1

. . . √
λn


and define the matrix S by S =Q

√
DQT. Then we can verify

S2 =Q
√
DQTQ

√
DQT =Q

√
D
√
DQT =QDQT = A.

Since by assumption all the eigenvalues λ1, . . . ,λn of A are nonnegative,
all the eigenvalues

√
λ1, . . . ,

√
λn of S are also nonnegative, so S is also a

positive semiedefinite matrix.

Solution to problem 1.18, page 9:

(a) This can be done by computing the eigenvalues and verifying that they
are nonnegative, as we will do in (b).

(b) We start by evaluating the characteristic polynomial

det(A−λI) =

∣∣∣∣∣∣∣∣
2−λ 3 1

3 6−λ 3
1 3 2−λ

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
2−λ 3 λ− 1

3 6−λ 0
1 3 1−λ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
2−λ 3 λ− 1

3 6−λ 0
3−λ 6 0

∣∣∣∣∣∣∣∣ = (λ− 1)
∣∣∣∣∣ 3 6−λ
3−λ 6

∣∣∣∣∣
= (1−λ)(18− (3−λ)(6−λ)) = λ(λ− 1)(9−λ).
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To obtain the eigenspace for λ1 = 0 we compute

A ∼

2 3 1
3 6 3
1 3 2

 ∼
1 2 1
2 3 1
1 3 2

 ∼
1 2 1
0 −1 −1
0 1 1

 ∼
1 0 −1
0 1 1
0 0 0

 .

We choose a normalised solution to the system, q1 = 1√
3

[1,−1,1]T, so that
we will have an orthonormal basis of eigenvectors.

For λ2 = 1 we have

A− I ∼

1 3 1
3 5 3
1 3 1

 ∼
1 3 1
0 −4 0
0 0 0

 ∼
1 0 1
0 1 0
0 0 0

 .

We choose q2 = 1√
2

[−1,0,1]T. For λ3 = 9 we have

A− 9I ∼

−7 3 1
3 −3 3
1 3 −7

 ∼
 1 −1 1
−7 3 1
1 3 −7

 ∼
1 −1 1
0 −4 8
0 4 −8

 ∼
1 0 −1
0 1 −2
0 0 0

 .

We choose q3 = 1√
6

[1,2,1]T.

(c) As explained in Exercise 1.17 we define
√
D = diag(0,1,3),Q = [q1,q2,q3]

and compute

√
A =Q

√
DQT = q2q

T
2+3q3q

T
3 =

1
2

 1 0 −1
0 0 0
−1 0 1

+1
2

1 2 1
2 4 2
1 2 1

 =

1 1 0
1 2 1
0 1 1

 .

Solution to problem 1.19, page 10: Following the algorithm, we denote

a11 = 1, b =
[

2
−1

]
, B =

[
8 2
2 6

]
.

Then we compute

L1 =

 1 0 0
2 1 0
−1 0 1

 and A2 =
[
8 2
2 6

]
−
[

4 −2
−2 1

]
=

[
4 4
4 5

]
.

This completes the first step. In the next step we repeat the process for A2. We
denote

a11 = 4, b =
[
4
]
, B =

[
5
]

and compute

L2 =
[
2 0
2 1

]
, A3 = 5− 4 = 1.

The last step is to compute the square-root
√
A3 = 1 and to compute L3 = 1. To

get the final result it is actually not necessary to explicitly compute the product
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in (1.2). Namely, it can be verified that the same result can be obtained simply
by nesting the first columns of the L1, L2 and L3 matrices into one matrix

L =

 1 0 0
2 2 0
−1 2 1

 .

Solution to problem 1.20, page 10: Note that a matrix X is negative definite if

and only if the matrix −X is positive definite. As the (1,1)-entry of −A is −1, the
matrix −A is not positive definite by Sylvester’s criterion, so A is not negative
definite. On the other hand, for the matrix

−B =

 4 −6 2
−6 10 −5
2 −5 14


we have

4 > 0 ,
∣∣∣∣∣ 4 −6
−6 10

∣∣∣∣∣ = 4 > 0 and det(−B) = 36 > 0.

Hence, −B is positive definite by Sylvester’s criterion, which means that B is
negative definite.

Let’s find the Cholesky decomposition of Y = −B, which we’ll write in block
form as

Y =

 4 −6 2
−6 10 −5
2 −5 14

 =
[
y11 zT

z Z

]
.

For the first step we have

L1 =
[√
y11 0T
1√
y11

c I2

]
=

 2 0 0
−3 1 0
1 0 1

 .

Then

Y2 = Z − 1
y11

zzT =
[

10 −5
−5 14

]
− 1

4

[
36 −12
−12 4

]
=

[
1 −2
−2 13

]
,

so, for the second step, we get

L2 =

√1 0
−2√

1
1

 =
[

1 0
−2 1

]
.

The third and final step gives L3 =
√

13− 1
1 (−2)(−2) =

√
9 = 3. ‘Assembling’ L1,

L2 and L3 we obtain

L =

 2 0 0
−3 1 0
1 −2 3

 .

We have the Cholesky decomposition LLT of Y = −B.
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Solution to problem 2.1, page 11: First, recall that any n × n matrix A can be

uniquely expressed as the linear combination

A =
n∑

i,j=1

aijEij

where aij is the (i, j)-entry of A and Eij is the matrix which contains only zeros
except for the (i, j)-entry which equals 1. As the set {Eij ; i, j = 1, . . . ,n} is also
clearly linearly independent, it forms a basis of the vector space (Rn×n,+, ·)
which we will call the standard basis. Since we have n2 basis vectors, this
demonstrates that (Rn×n,+, ·) is n2 dimensional.

(a) Denote this subset by U1 and assume A,B ∈U1. Since

αA+ βB = α
n∑

i,j=1

aijEij + β
n∑

i,j=1

bijEij =
n∑

i,j=1

(αaij + βbij )Eij

the (1,2)-entry of αA+βB is α ·0+β ·0 = 0, i.e., αA+βB ∈U1. Hence, U1
is a vector subspace of Rn×n.
For the basis of U1 we simply omit E12 from the standard basis of Rn×n.
Therefore, a basis of U1 has one element less than the standard basis of
R
n×n, i.e., dim(U1) = n2 − 1.

(b) For a subset of a vector space to be a vector subspace it must contain all
scalar multiples of all its elements, including 0. The simplest argument
why this subset is not a subspace is therefore because it does not contain
the 0 matrix. Another argument is that this subset is not closed for ad-
dition since adding two matrices with 1 for their (1,2) entries produces
a matrix with 2 for its (1,2) entry.

(c) This subset contains the 0 matrix and is also closed for addition since
adding matrices with integer entries results in matrices with integer en-
tries. However, this subset is not closed for scalar multiplication. For
instance multiplying any non-zero integer matrix with for instance π
will produce a matrix that does not have all integer entries.

(d) If we add two upper-triangular matrices, we get an upper-triangular
matrix. Similarly, if we multiply an upper-triangular matrix with any
scalar, the result will be an upper-triangular matrix. This subset, let us
denote it with U4, is therefore closed for addition and scalar multiplica-
tion and is clearly a subspace. To find a basis for U4 and determine its
dimension, we notice that any matrix A ∈U4 can be written as

A =
∑
i≤j

aijEij

where the sum goes over all the pairs i, j = 1, . . . ,n with i ≤ j. So a basis
for U4 is the set {Eij : i, j = 1, . . . ,n, i ≤ j}. This set contains 1

2n(n + 1)
elements which is the dimension of U4.

(e) Adding symmetric matrices produces a symmetric matrix, multiplying
a symmetric matrix with any number also results in a symmetric matrix,
so the set of symmetric matrices is clearly a vector subspace.
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More formally, denote the subset of symmetric matrices by U5 and as-
sume A,B ∈ U5, meaning AT = A and BT = B. We can then easily verify
that any linear combination of A and B is also a symmetric matrix since

(αA+ βB)T = αAT + βBT = αA+ βB.

To get an explicit basis for U5 we can notice that any matrix A ∈ U5 can
be written as

A =
n∑
i=1

aiiEii +
∑
i<j

aij (Eij +Eji).

Here, we separated the diagonal elements in the first sum and off-diagonal
in the second sum. This allows us to directly identify a basis for U5 as
the set

{Eii : i = 1, . . . ,n} ∪ {Eij +Eji : i, j = 1, . . . ,n, i < j}.

The number of elements in this basis and hence the dimension of U5 is
n+ 1

2n(n− 1) = 1
2n(n+ 1).

(f) Like for the case of symmetric matrices, it is easy to conclude that the
set of antisymmetric matrices is also subspace. Denote the set of anti-
symmetric matrices by U6 and assume A,B ∈U6, implying AT = −A and
BT = −B. Then

(αA+ βB)T = αAT + βBT = −(αA+ βB)

showing that any linear combination of antisymmetric matrices is an
antisymmetric matrix. To get a basis we can notice that any antisym-
metric matrix A ∈U6 can be written as

A =
∑
i<j

aij (Eij −Eji).

This sum does not include any non-zero diagonal elements since an anti-
symmetric matrix necessarily has only zeros on the diagonal. A possible
basis is therefore the set

{Eij −Eji : i, j = 1, . . . ,n, i < j}

and the dimension of U6 is 1
2n(n− 1).

To conclude, we mention that the vector spaces bases we identified for
the case of symmetric and antisymmetric matrices together form a basis
for the entire vector space R

n×n, which also agrees with the dimensions
since 1

2n(n+ 1) + 1
2n(n− 1) = n2.

(g) The set of invertible matrices is not a vector subspace since it does not
contain the 0 matrix. It is also not closed for addition, since even if A
(and hence also −A) is an invertible matrix, the sum A+ (−A) = 0 is not
invertible.

(h) The set of matrices with zero determinant is closed under scalar multi-
plication since if det(A) = 0, then we also have

det(αA) = αndet(A) = 0.
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However this set is not closed under addition. A simple counterexample
is [

1 0
0 0

]
+
[
0 0
0 1

]
=

[
1 0
0 1

]
.

(i) The set of nilpotent matrices is again closed under scalar multiplication,
since Nn = 0 implies (αN )n = αnNn = 0. But again, this set is not closed
under addition. For instance let

A =
[
0 0
1 0

]
and B =

[
0 1
0 0

]
.

Then we have A2 = 0 and B2 = 0, so both are nilpotent matrices. But for
their sum

C = A+B =
[
0 1
1 0

]
we have C2 = I (and more generally Ck = C for odd k and Ck = I for
even k) so it is not a nilpotent matrix.

(j) It is useful to provide a more explicit description of the set U10 of all
nilpotent upper-triangular matrices. First, let A be a general upper-
triangular matrix with elements a1, . . . , an on the diagonal

A =


a1 ∗ . . . ∗
0 a2 . . . ∗
...

. . .
...

0 . . . 0 an

 .

If we compute the m-th power of such a matrix, we notice we get a
matrix of the form

Am =


am1 ∗ . . . ∗
0 am2 . . . ∗
...

. . .
...

0 . . . 0 amn

 .

This means we can have a nilpotent upper-triangular matrix only if all
the diagonal elements equal zero, a1 = . . . = an = 0.
Conversely, if we have an upper-triangular with zeros on the diagonal

A =


0 ∗ . . . ∗
0 0 . . . ∗
...

. . .
...

0 . . . 0 0


we can quite directly see that we get An = 0 (with every multiplication
by A we see we lose an additional line of elements above the diagonal
until none are left).
In other words the set of nilpotent upper-triangular matrices is precisely
the set of strictly upper-triangular matrices, which is clearly a vector
subspace.
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Thus any A ∈U10 can be written as

A =
∑
i<j

aijEij .

A basis is the set
{Eij : i, j = 1, . . . ,n, i < j}

and the dimension is 1
2n(n− 1).

(k) Assume we have two matrices A,B ∈ U11 from the set of matrices with
zero trace, tr(A) = tr(B) = 0. Then by the properties of the tr operator we
see that any linear combination also has zero trace:

tr(αA+ βB) = αtr(A) + βtr(B) = 0.

Thus U11 is a vector subspace. From tr(A) = a11 + a22 + · · · + ann = 0 we
get ann = −(a11 + a22 + · · · + an−1,n−1), so one way of explicitly writing a
general matrix A ∈U11 is

A =
n−1∑
i=1

aiiEii − (a11 + . . .+ an−1,n−1)Enn +
∑
i,j

aijEij

=
n−1∑
i=1

aii(Eii −Enn) +
∑
i,j

aijEij .

A possible basis is then the set

{Eii −Enn : i = 1, . . . ,n− 1} ∪ {Eij : i, j = 1, . . . ,n, i , j}.

The dimension is n−1+n2−n = n2−1. This also agrees with the fact that
we have basically one equation tr(A) = a11 + . . . + ann = 0 for the entries
of the matrix A and n2 − 1 ‘free’ variables.

Solution to problem 2.2, page 11:

(a) Recall that a vector space is a set V , equipped with an inner operation
called addition

+: V ×V → V , (v1,v2) 7→ v1 + v2

and an outer operation called scalar multiplication

· : R×V → V , (α,v) 7→ αv

such that the following conditions hold:

(VS1) u + v = v +u and (u + v) +w = u + (v +w),

(VS2) there exists a zero vector 0 and v + 0 = 0+ v = v,

(VS3) for each v ∈ V there exists an inverse vector −v, such that v+(−v) =
(−v) + v = 0,

(VS4) 1 · v = v,

(VS5) (αβ) · v = α · (β · v),
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(VS6) (α + β) · v = α · v + β · v,

(VS7) α · (u + v) = α ·u +α · v,

for all u,v,w ∈ V and α,β ∈R.
We need to verify that conditions (VS1)–(VS7) hold for (R+,⊕,⊙). Pick
arbitrary x,y,z ∈R+ and α,β ∈R. Here we go:

(VS1) x⊕ y = xy = yx = y ⊕ x, x⊕ (y ⊕ z) = x(yz) = xyz = (xy)z = (x⊕ y)⊕ z,
(VS2) for 1 ∈ R+ we have x⊕ 1 = x · 1 = x, i.e., 1 acts as the zero vector in

R
+; 0 = 1 (and this is not contradictory),

(VS3) let’s use the (ad hoc) notation ⊖x = 1/x (this is well-defined since
x , 0), then x⊕ (⊖x) = x · 1

x = 1, which is the zero vector in R
+,

(VS4) 1⊙ x = x1 = x,

(VS5) (αβ)⊙ x = xαβ = (xβ)α = α ⊙ (β ⊙ x),

(VS6) (α + β)⊙ x = xα+β = xαxβ = (α ⊙ x)⊕ (β ⊙ x),

(VS7) α ⊙ (x⊕ y) = (xy)α = xαyα = (α ⊙ x)⊕ (α ⊙ y),

hence (R+,⊕,⊙) is a vector space over R.
(b) Note that every x ∈R+ can be written as x = elogx = (logx)⊙ e, i.e., every

x ∈ R+ is some scalar multiple of e (the base of the natural logarithm).
Hence {e} is a basis for (R+,⊕,⊙) and dim(R+) = |{e}| = 1.

Solution to problem 2.3, page 11:

(a) While we could check the axioms of a vector space as in the previous
problem, let us solve this with some ingenuity. Let R

∞ := R ×R × · · ·
be the set of all sequences (a0, a1, a2, . . .). (This is the countably infinite
Cartesian product of R’s.) This set is a vector space over R, for opera-
tions defined by

(an) + (bn) := (an + bn) and α(an) := (αan),

for (an), (bn) ∈ R
∞ and α ∈ R. We invite the reader to prove that this

is indeed a vector space. (The proof can be copied practically verbatim
from the proof that Rn is a vector space with the usual operations.)
Note that F is a subset of R∞ and that the vector space operations on R

∞

agree with those defined on the set F. Now, we only need to prove that
F is a vector subspace of R∞. So let’s pick (an), (bn) ∈ F, i.e., sequences
with properties an = an−1 + an−2 and bn = bn−1 + bn−2 for all n ≥ 2. Also
pick α,β ∈R. Then

αan+βbn = α(an−1+an−2)+β(bn−1+bn−2) = (αan−1+βbn−1)+(αan−2+βbn−2),

hence α(an) + β(bn) ∈ F, i.e., it is a Fibonacci sequence and F is a vector
subspace of R∞. Therefore, F is also a vector space by itself.

(b) Note that every Fibonacci sequence (an) is completely determined by its
two initial terms, a0 and a1. Set

(fn) = (0,1,1,2,3,5,8, . . .)

and (gn) = (1,0,1,1,2,3,5, . . .).
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Now, any Fibonacci sequence (an) with initial terms a0 and a1 can be
written as (an) = a0(fn) + a1(gn), and, since (fn) and (gn) are linearly in-
dependent, the set BF = {(fn), (gn)} is a basis of F.
In this basis, we have

(1,1,2,3,5,8,13, . . .) = (fn) + (gn).

Solution to problem 2.4, page 12: We need to prove that for any X,Y ∈ U and

any α,β ∈ R we have αX + βY ∈ U . So we pick arbitrary X,Y ∈ U and α,β ∈ R.
Now, X,Y ∈U means that XN =NX and YN =NY , and we have

(αX + βY )N = αXN + βYN = αNX + βNY =N (αX + βY ),

hence αX + βY ∈U and U is a vector subspace of R2×2.
To determine a basis, we need the actual matrix N . Write

A =
[
a b
c d

]
.

The equation AN =NA becomes[
a b
c d

][
0 0
1 0

]
=

[
0 0
1 0

][
a b
c d

]
∴

[
b 0
d 0

]
=

[
0 0
a b

]
∴

b = 0, 0 = 0,
d = a, 0 = b.

Hence, a matrix A ∈U must be of the form

A =
[
a 0
c a

]
= a

[
1 0
0 1

]
+ c

[
0 0
1 0

]
= aI + cN ,

where a,c ∈ R are arbitrary. Since I and N are linearly independent, so BU =
{I,N } is a basis for U and dimU = 2.

Solution to problem 2.5, page 12:

(a) Note that the zero polynomial is 0 = 0 · x + 0, and this is not contained
in U1, since a = 0. That means that U1 does not contain the zero poly-
nomial and U1 is not a vector subspace of R1[x].

(b) Pick p,q ∈U2 and α,β ∈R. We have

(αp+ βq)(0) = αp(0) + βq(0) = α · 0 + β · 0 = 0,

i.e. αp+ βq ∈U2 and U2 is a vector subspace of R2[x].
(c) No. This subset clearly does not contain the zero polynomial.
(d) Again, pick p,q ∈U4 and α,β ∈R. Then

(αp+ βq)′′(3) = αp′′(3) + βq′′(3) = α · 0 + β · 0 = 0,

i.e. αp+ βq ∈U4 and U4 is a vector subspace of Rn[x].
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Solution to problem 2.6, page 12: Note thatA is invertible andA−1AA−1 = A−1,

i.e., A−1 is nonzero and A−1 ∈W . Also

(2A−1)A(2A−1) = 4A−1 , 2A−1,

soW is not closed under scalar multiplication (nor is it closed under addition),
hence W is not a vector subspace of R2×2.

On the other hand, for any two matrices X,Y ∈ V , i.e., any two matrices
X,Y ∈ R2×2 such that XA+AX = 0 and YA+AY = holds, and any α,β ∈ R we
have

(αX + βY )A+A(αX + βY ) = α(XA+AX) + β(YA+AY ) = α · 0 + β · 0 = 0.

Therefore, αX + βY ∈ V and V is a vector subspace of R2×2.
Let’s find a basis of V . Write

X =
[
x11 x12
x21 x22

]
.

The equation XA+AX = 0 becomes[
x11 x12
x21 x22

][
1 −1
0 −1

]
+
[
1 −1
0 −1

][
x11 x12
x21 x22

]
=

[
0 0
0 0

]
or [

2x11 − x21 −x11 − x22
0 −x21 − 2x22

]
=

[
0 0
0 0

]
.

This gives us equations 2x11−x21 = 0, −x11−x22 = 0 and −x21−2x22 = 0. Hence

x11 = −x22 and x21 = −2x22,

while x12 and x22 are arbitrary real numbers. So, a general matrix X ∈ V is

X =
[
−x22 x12
−2x22 x22

]
= x12

[
0 1
0 0

]
+ x22

[
−1 0
−2 1

]
for x12,x22 ∈R.

One possible basis for V is therefore

BV =
{[

0 1
0 0

]
,

[
−1 0
−2 1

]}
and dim(V ) = |BV | = 2.

Solution to problem 2.8, page 13: The proof that R[x] is a vector space follows

the same argument as the proof that Rn[x] is a vector space. It is routine and
left to the reader. The (infinite) set of polynomials

B = {1,x,x2,x3, . . .}

is clearly contained in R[x]. Moreover, for any p ∈R[x] we have

p(x) = a0 + a1x+ a2x
2 + · · ·+ anxn,
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i.e., p is a linear combination of polynomials in B. Since the elements in B are
linearly independent (as they are polynomials of different degrees), the set B
is a basis for R[x]. Now, B has infinitely many elements, hence dimR[x] =∞.

For the subspaceW ; every polynomial p ∈W has zeroes 1 and −1, so it must
be divisible by (x − 1)(x + 1) = x2 − 1. Again, there are infinitely many linearly
independent polynomials in R[x] with this property. Namely, the set

BW = {x2 − 1,x(x2 − 1),x2(x2 − 1), . . .}

is a basis for W and dimW =∞.
Perhaps, we should be more precise in dealings with infinities. The ‘amount’

of elements in B is the same as the ‘amount’ of elements in the set of the natu-
ral numbers N. Actually, the map N→ B, n 7→ xn is a bijection. (Here, 0 is a
natural number.) So, in more precise notation,

dimR[x] = ℵ0 and dimW = ℵ0,

where ℵ0 = |N| is the cardinality of the set N.

Solution to problem 2.9, page 13: Pick f ,g ∈ V , i.e., f ′′ + f = 0 and g ′′ + g = 0,

and α,β ∈R. Then

(αf + βg)′′ + (αf + βg) = αf ′′ + βg ′′ +αf + βg = α(f ′′ + f ) + β(g ′′ + g) = 0,

i.e. αf + βg ∈ V , so V is a vector subspace of C∞(0,2π).
To determine its basis recall that the general solution to the second order

linear differential equation y′′ + y = 0 is

y(x) = C1 cosx+C2 sinx,

i.e., a linear combination of functions cosx and sinx. As these two functions
are linearly independent (as the reader will verify), the set

BV = {cosx,sinx}

is a basis for V .

Solution to problem 2.10, page 13:

(a) To shorten the notation, we set A = [1 1
1 0 ], so that τ(X) = AX +XA. Then,

for any X,Y ∈R2×2 and any α,β ∈R, we have

τ(αX + βY ) = A(αX + βY ) + (αX + βY )A = αAX + βAY +αXA+ βYA

= α(AX +XA) + β(AY +YA) = ατ(X) + βτ(Y ),

i.e., τ is a linear map.
(b) We need to evaluate τ at each of the basis vectors, and then express that
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evaluation as a linear combination of basis vectors. We get

τ(E11) = τ
([

1 0
0 0

])
=

[
1 1
1 0

][
1 0
0 0

]
+
[
1 0
0 0

][
1 1
1 0

]
=

[
2 1
1 0

]
= 2E11 +E12 +E21,

τ(E12) = τ
([

0 1
0 0

])
=

[
1 1
1 0

][
0 1
0 0

]
+
[
0 1
0 0

][
1 1
1 0

]
=

[
1 1
0 1

]
= E11 +E12 +E22,

τ(E21) = τ
([

0 0
1 0

])
=

[
1 1
1 0

][
0 0
1 0

]
+
[
0 0
1 0

][
1 1
1 0

]
=

[
1 0
1 1

]
= E11 +E21 +E22,

τ(E22) = τ
([

0 0
0 1

])
=

[
1 1
1 0

][
0 0
0 1

]
+
[
0 0
0 1

][
1 1
1 0

]
=

[
0 1
1 0

]
= E12 +E21,

hence, the matrix corresponding to τ with respect to the standard basis
of R2×2 is

Aτ =


2 1 1 0
1 1 0 1
1 0 1 1
0 1 1 0

 .

(The columns ofAτ correspond to coefficients in the expressions of τ(Eij )
as linear combinations of Eij ’s.)

Solution to problem 2.11, page 14:

(a) For p,q ∈R3[x] and α,β ∈R we have

φ(αp+ βq) = (αp+ βq)(A) = αp(A) + βq(A) = αφ(p) + βφ(q),

i.e., φ is linear.
For 1,x,x2 and x3 we have, with a slight abuse of notation,

φ(1) = I =
[
1 0
0 1

]
, φ(x2) = A2 =

[
5 4
4 5

]
,

φ(x) = A1 =
[
1 2
2 1

]
, φ(x3) = A3 =

[
13 14
14 13

]
,

so the matrix corresponding to φ with respect to the bases {1,x,x2,x3}
and {E11,E12,E21,E22} is

Aφ =


1 1 5 13
0 2 4 14
0 2 4 14
1 1 5 13

 .
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(b) We’ll determine kerφ from the nullspace N (Aφ). With respect to the
basis {1,x,x2,x3} the polynomial p(x) = ax3 + bx2 + cx + d is represented
by the column [d,c,b,a]T. Gaussian elimination on Aφ gives

Aφ ∼


1 0 3 6
0 1 2 7
0 0 0 0
0 0 0 0

 ,

which gives us equations

d + 3b+ 6a = 0,

c+ 2b+ 7a = 0.

Therefore c = −7a − 2b and d = −6a − 3b. Hence, a general polynomial
p ∈ kerφ is of the form

p(x) = ax3 + bx2 + (−7a− 2b)x − 6a− 3b = a(x3 − 7x − 6) + b(x2 − 2x − 3).

This means that the set {x2 − 2x − 3,x3 − 7x − 6} is one possible basis for
kerφ and dim(kerφ) = 2.

(c) Let’s denote W = {X ∈R2×2 : q(X) = 0}. Note that the matrix

B =
[
−1 0
0 0

]
is contained in the set W , since q(B) = 0. However,

q(−B) = q
([

1 0
0 0

])
=

[
−4 0
0 0

]
, 0,

so −B <W and W is not a vector subspace.

Solution to problem 2.12, page 14:

(a) This is direct. Assume αa+ βb+γc = 0, i.e.,

αa+ βb+γc = [a,b,c]

αβ
γ

 =

1 1 0
1 0 1
0 1 1


αβ
γ

 =

00
0

 .

A quick Gaussian elimination on the matrix [a,b,c] helps us show that
[α,β,γ]T = [0,0,0]T is the unique solution to this system, hence a, b, and
c are linearly independent. Since we have three linearly independent
vectors in a vector space of dimension 3, they must constitute a basis of
that vector space.

(b) This is also direct. Since we are already given τ on these three basis
vectors, we simply read off the coefficients:

Aτ,B,B =

1 1 1
0 1 0
0 0 1

 .



CHAPTER 4. SOLUTIONS 59

(c) While we could also do this directly (and a bit tediously), we rather start
with a diagram:

(R3,B) (R3,B)

(R3,S) (R3,S)

τ

Aτ,B,B

τ

Aτ,S ,S

id Aid,S ,B id Aid,B,S

The nodes on this diagram represent vector spaces along with their as-
sumed bases, while the arrows represent linear maps and the corre-
sponding matrices with respect to the assumed bases. Note that K :=
Aid,B,S = [a,b,c], and Aid,S ,B = K−1. Hence, since τ = id ◦ τ ◦ id (the τ on
the left hand side is the bottom τ in our diagram), we have

Aτ,S ,S = Aid,B,S ·Aτ,B,B ·Aid,S ,B or Aτ,S ,S = KAτ,B,BK
−1.

After evaluating K−1, and multiplying that triple product, we get

Aτ,S ,S =

1 0 1
0 1 1
0 0 1

 .

(d) The vector [1,1,1]T is given in the standard basis, we could (with exces-
sive use of ornaments) write11

1

 = i+ j+k =

11
1


S

.

Therefore τ

11
1




S

= Aτ,S ,S

11
1


S

=

22
1


S

=

22
1

 .

We could also have used the matrix corresponding to τ with respect to
the basis B. Note that 11

1


S

=
1
2

(a+b+ c) =


1
2
1
2
1
2


B

.

Hence, τ

11
1




B

= Aτ,B,B


1
2
1
2
1
2


B

=


3
2
1
2
1
2


B

.

That last column represents 3
2a + 1

2b + 1
2c, which is exactly [2,2,1]T (in

the standard basis).

Solution to problem 2.13, page 14:
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(a) Pick arbitrary p,q ∈R3[x] and α,β ∈R. Then

φ(αp+ βq) =

(αp+ βq)(−1)
(αp+ βq)(0)
(αp+ βq)(1)

 =

αp(−1) + βq(−1)
αp(0) + βq(0)
αp(1) + βq(1)


= α

p(−1)
p(0)
p(1)

+ β

q(−1)
q(0)
q(1)

 = αφ(p) + βφ(q),

i.e., φ is linear.
(b) For any p ∈ kerφ, by definition, φ(p) = 0 must hold. In our case that

means that

φ(p) =

p(−1)
p(0)
p(1)

 =

00
0

 ,

or p(−1) = 0, p(0) = 0, p(1) = 0, i.e., −1, 0, and 1 are zeroes of an at most
degree 3 polynomial p. One choice for p is p(x) = (x+ 1)x(x−1) = x3 − x.
Any other polynomial contained in kerφ must be a scalar multiple of
that p, since there are no higher degree polynomials in R3[x]. Hence,
Bkerφ = {x3 − x} is one possible basis for kerφ.

(c) Let’s evaluate φ at the basis polynomials 1, x, x2 and x3:

φ(1) =

11
1

 , φ(x) =

−1
0
1

 , φ(x2) =

10
1

 , φ(x3) =

−1
0
1

 .

Hence, the matrix corresponding to φ is

Aφ =

1 −1 1 −1
1 0 0 0
1 1 1 1

 .

Solution to problem 2.14, page 14: Linearity of ψ essentially follows from the

linearity of derivation, scalar multiplication, and addition. We have

ψ(αp+ βq)(x) = (x(αp+ βq)(x+ 1))′ − 2(αp+ βq)(x)

= (αxp(x+ 1) + βxq(x+ 1))′ − 2αp(x)− 2βq(x)

= α(xp(x+ 1))′ + β(xq(x+ 1))′ − 2αp(x)− 2βq(x)

= α ((xp(x+ 1))′ − 2p(x)) + β ((xq(x+ 1))′ − 2q(x))

= αψ(p)(x) + βψ(q)(x)

for any p,q ∈R2[x] and any α,β ∈R, i.e., ψ is linear.
To determine the matrix corresponding to ψ we evaluate ψ on 1, x, and x2.

With slight abuse of notation, we get

ψ(1)(x) = (x · 1)′ − 2 · 1 = 1− 2 = −1,

ψ(x)(x) = (x · (x+ 1))′ − 2 · x = (x2 + x)′ − 2x = 2x+ 1− 2z = 1,

ψ(x2)(x) = (x · (x+ 1)2)′ − 2 · x2 = (x3 + 2x2 + x)′ − 2x2 = x2 + 4x+ 1.
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So, with respect to the basis {1,x,x2}, the matrix corresponding to ψ is

Aψ =

−1 1 1
0 0 4
0 0 1

 ,

Finally, determination of kerψ and imψ might be easier by means ofN (Aψ)
andC(Aψ) in this particular case. Note thatAψ is a rank 2 matrix, with columns
2 and 3 linearly independent. Those two columns express polynomials 1 and
1+4x+x2 with respect to the standard basis. (Namely, ψ(x) and ψ(x2).) Hence,

Bimψ = {1,x2 + 4x+ 1}

is a basis for imψ and imψ is determined. A quick Gaussian elimination on
Aψ gives

Aψ→

1 −1 0
0 0 1
0 0 0

 .

i.e., columns of the form [x2,x2,0]T are contained in N (Aψ), or [1,1,0]T is a
choice for the sole basis vector of N (Aψ). That means that

Bkerψ = {x+ 1}

is a basis for kerψ.

Solution to problem 2.15, page 15:

(a) This is direct:

φ(αx+ βy) = (αx+ βy)aT = αxaT + βyaT

= αφ(x) + βφ(y).

This holds for any x,y ∈R2 and any α,β ∈R, i.e., φ is linear.

(b) The standard bases of R2 and R
2×2 are

{
[1

0 ], [0
1 ]

}
and {E11,E12,E21,E22},

respectively. We have

φ

([
1
0

])
=

[
1
0

][
1 1

]
=

[
1 1
0 0

]
= E11 +E12,

φ

([
0
1

])
=

[
0
1

][
1 1

]
=

[
0 0
1 1

]
= E21 +E22,

so the matrix corresponding to φ is

Aφ =


1 0
1 0
0 1
0 1

 .

(c) Note that Aφ is of rank 2, hence dim(imφ) = dim(C(Aφ)) = 2, and, since

dim(kerφ) + dim(imφ) = dim(R2) = 2,

we must have dim(kerφ) = 0 .
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(d) The two (linearly independent) columns of Aφ represent matrices[
1 1
0 0

]
, and

[
0 0
1 1

]
,

which, of course, constitute a basis for imφ.

Solution to problem 2.16, page 15:

(a) For any p,q ∈ V and any α,β ∈ R we have (using the definition of vector
space operations on polynomials and the fact that derivation is linear)

φ(αp+ βq) =
[
(αp+ βq)(−1) (αp+ βq)′(−1)
(αp+ βq)(1) (αp+ βq)′(1)

]
= α

[
p(−1) p′(−1)
p(1) p′(1)

]
+ β

[
q(−1) q′(−1)
q(1) q′(1)

]
= αφ(p) + βφ(q),

i.e., φ is a linear map.
(b) Note that (1)′ = 0, (1 − x2)′ = −2x and (1 + x4)′ = 4x3. Evaluating φ at

polynomials from the basis B therefore gives

φ(1) =
[
1 0
1 0

]
, φ(1− x2) =

[
0 2
0 −2

]
and φ(1 + x4) =

[
2 −4
2 4

]
.

Hence, the matrix corresponding to φ with respect to the (ordered)
bases B = {1,1− x2,1 + x4} and S

R
2×2 = {E11,E12,E21,E22} is

Aφ =


1 0 2
0 2 −4
1 0 2
0 −2 4

 .

(c) Let’s determine N (Aφ). After a quick Gaussian elimination on Aφ we
get

Aφ ∼


1 0 2
0 1 −2
0 0 0
0 0 0

 ,

so a general solution to Aφx = 0 is the column

x =

−2x3
2x3
x3

 = x3

−2
2
1

 .

The polynomial determined by that column (with respect to the basis B
of V ) is

x3(−2 · 1 + 2 · (1− x2) + 1 · (1 + x4)) = x3(x4 − 2x2 + 1) = x3(x2 − 1)2,

where x3 is an arbitrary real number. Hence, Bkerφ = {(x2 − 1)2} is one
possible basis for kerφ.
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From dim(kerφ) + dim(imφ) = dim(V ) = 3 and the (just established)
fact that dim(kerφ) = 1 we obtain dim(imφ) = 2. Since the matrices
φ(1) and φ(1− x2) from (b) are clearly linearly independent, a choice of
basis for imφ is

Bimφ =
{[

1 0
1 0

]
,

[
0 2
0 −2

]}
.

Solution to problem 2.17, page 15:

(a) Pick z1, z2 ∈U +V . By the definition of U +V , we can write z1 and z2 as
z1 = u1+v1 and z2 = u2+v2 for some u1,u2 ∈U and v1,v2 ∈ V . Therefore,
for scalars α1,α2 ∈R,

α1z1 +α2z2 = α1(u1 + v1) +α2(u2 + v2) = (α1u1 +α2u2) + (α1v1 +α2v2),

which is an element of U +V , since U and V are vector subspaces of W .
Hence, U +V is a vector subspace of W .
The proof that U ∩V is also a vector subspace is left to the reader.

(b) For (u,v), (u′ ,v′) ∈U ×V and α ∈R define

(u,v) + (u′ ,v′) := (u +u′ ,v + v′),

and α · (u,v) := (αu,αv).

(Note that the operations on the right side are the vector space opera-
tions inU and V , while the operations on the left side are newly defined
operations.)
The routine verification that U × V is a vector space with these opera-
tions is conveniently left to the reader.
Pick bases {u1,u2, . . . ,um} and {v1,v2, . . . , vn} of U and V , respectively. As
the reader will verify, the set

{(u1,0), (u2,0), . . . , (um,0), (0,v1), (0,v2), . . . , (0,vn)}

is a basis of U ×V . Hence, dim(U ×V ) = dim(U ) + dim(V ).
(c) Let’s pick (u1,v1), (u2,v2) ∈U ×V and α1,α2 ∈R. We have

φ(α1(u1,v1) +α2(u2,v2)) = φ(α1u1 +α2u2,α1v1 +α2v2)

= (α1u1 +α2u2)− (α1v1 +α2v2)

= α1(u1 − v1) +α2(u2 − v2)

= α1φ(u1,v1) +α2φ(u2,v2),

i.e., φ is linear.
To determine ker(φ) we solve φ(u,v) = 0 or u − v = 0, which means
u = v. Note that, since u ∈ U and v ∈ V , this also implies u = v ∈ U ∩V .
Therefore

ker(φ) = {(z,z) : z ∈U ∩V }.

The image of φ consists of vectors φ(u,v) = u − v for u ∈ U and v ∈ V .
We can rewrite this as φ(u,−v) = u + v, i.e., im(φ) =U +V .

(d) Linearity of ψ is obvious. Since ψ(x) = (0,0) implies x = 0, ψ is injective.
Surjectivity of ψ is clear from the description of kerφ above.
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(e) We have

dim(U +V ) + dim(U ∩V ) = dim(imφ) + dim(kerφ) = dim(U ×V )

= dim(U ) + dim(V ).

Solution to problem 3.1, page 16: The Jacobian matrix is

JF =
[
cosϕ −r sinϕ
sinϕ r cosϕ

]
and the Jacobian determinant is

det(JF) =
∣∣∣∣∣cosϕ −r sinϕ
sinϕ r cosϕ

∣∣∣∣∣ = r cos2ϕ + r sin2ϕ = r.

Solution to problem 3.2, page 16: The Jacobian matrix is

JF =

cosϕ −r sinϕ 0
sinϕ r cosϕ 0

0 0 1

 .

The Jacobian determinant is the same as for the case of polar coordinates

det(JF) =

∣∣∣∣∣∣∣∣
cosϕ −r sinϕ 0
sinϕ r cosϕ 0

0 0 1

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣cosϕ −r sinϕ
sinϕ r cosϕ

∣∣∣∣∣ = r.

Solution to problem 3.3, page 16: The Jacobian matrix is

JF =

cosθ cosϕ −r cosθ sinϕ −r sinθ cosϕ
cosθ sinϕ r cosθ cosϕ −r sinθ sinϕ

sinθ 0 r cosθ

 .

Computation of the Jacobian determinant requires a little more work than for
polar and cylindrical coordinates:

det(JF) =

∣∣∣∣∣∣∣∣
cosθ cosϕ −r cosθ sinϕ −r sinθ cosϕ
cosθ sinϕ r cosθ cosϕ −r sinθ sinϕ

sinθ 0 r cosθ

∣∣∣∣∣∣∣∣
= r2

∣∣∣∣∣∣∣∣
cosθ cosϕ −cosθ sinϕ −sinθ cosϕ
cosθ sinϕ cosθ cosϕ −sinθ sinϕ

sinθ 0 cosθ

∣∣∣∣∣∣∣∣
= r2

(
sinθ

∣∣∣∣∣−cosθ sinϕ −sinθ cosϕ
cosθ cosϕ −sinθ sinϕ

∣∣∣∣∣+ cosθ
∣∣∣∣∣cosθ cosϕ −cosθ sinϕ
cosθ sinϕ cosθ cosϕ

∣∣∣∣∣)
= r2

(
sin2θ cosθ

∣∣∣∣∣−sinϕ −cosϕ
cosϕ −sinϕ

∣∣∣∣∣+ cos3θ

∣∣∣∣∣cosϕ −sinϕ
sinϕ cosϕ

∣∣∣∣∣)
= r2 cosθ

(
sin2θ(sin2ϕ + cos2ϕ) + cos2θ(cos2ϕ + sin2ϕ)

)
= r2 cosθ(sin2θ + cos2θ) = r2 cosθ.
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Solution to problem 3.5, page 17:

(a) With a rectangular domain of integration, this one can be directly eval-
uated"
[0,1]×[0,1]

(5− x − y)dxdy =
∫ 1

0

(∫ 1

0
(5− x − y)dx

)
dy =

∫ 1

0

(
5x − x

2

2
− xy

) ∣∣∣∣∣x=1

x=0
dy

=
∫ 1

0

(9
2
− y

)
dy =

(
9y
2
−
y2

2

) ∣∣∣∣∣y=1

y=0
= 4.

(b) From x2 + y2 = 2 we get y = ±
√

2− x2 and, since
y ≥ x ≥ 0, only the solution y =

√
2− x2 is relevant.

We’ll integrate along y first. Our integral becomes

y = x

y =
√

2− x2

x

y

1

√
2

"
D

y

x+ 1
dxdy =

∫ 1

0

∫
√

2−x2

x

y

x+ 1
dy

dx =
∫ 1

0

y2

2(x+ 1)

∣∣∣∣∣y=
√

2−x2

y=x
dx

=
∫ 1

0

2− x2 − x2

2(x+ 1)
dx =

∫ 1

0

(1 + x)(1− x)
1 + x

dx

=
∫ 1

0
(1− x)dx =

1
2

.

(c) Let’s try directly as the boundaries are given, i.e.,
along y first (with 0 ≤ y ≤ x) and then along x (with
0 ≤ x ≤ π). We have

x

y

π

π
y = x

x = π

"
D

sinx
x

dxdy =
∫ π

0

(∫ x

0

sinx
x

dy

)
dx =

∫ π

0

sinx
x
· y

∣∣∣∣y=x

y=0
dx

=
∫ π

0

sinx
x
· xdx =

∫ π

0
sinxdx = 2.

(d) Since our domain of integration is whole R
2, the boundaries for x and y

are ±∞. We have"
R

2
e−x

2−y2
dxdy =

∫ ∞
−∞

(∫ ∞
−∞
e−x

2
e−y

2
dx

)
dy =

∫ ∞
−∞
e−y

2
(∫ ∞
−∞
e−x

2
dx

)
dy

=
(∫ ∞
−∞
e−x

2
dx

)(∫ ∞
−∞
e−y

2
dy

)
=

(∫ ∞
−∞
e−x

2
dx

)2

.

(The last equality follows after renaming the variable y in the second
definite integral to x. A variable doesn’t know its name, after all.) So,
denoting K =

!
R

2 e
−x2−y2

dxdy and L =
∫∞
−∞ e

−x2
dx, we have K = L2.
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We’ll evaluate K using polar coordinates

x = r cosϕ , y = r sinϕ , det(JF) = r.

The boundaries for r and ϕ are 0 ≤ r <∞ and 0 ≤ ϕ ≤ 2π. We obtain

K =
∫ ∞

0

(∫ 2π

0
e−r

2 cos2ϕ−r2 sin2ϕ · r dϕ
)
dr =

∫ ∞
0

(∫ 2π

0
re−r

2
dϕ

)
dr

= 2π
∫ ∞

0
re−r

2
dr = 2π

∫ ∞
0

e−t

2
dt = π,

where we substituted a new variable t = r2 into the (single) integral in
the second line.
Finally,

L =
∫ ∞
−∞
e−x

2
dx =

√
K =
√
π.

Solution to problem 3.7, page 17: Let’s determine the domain of integration:

The projection of the intersection of the paraboloid
z = 8−x2−y2 and the plane z = −1 onto the xy-plane
is the curve given by

8− x2 − y2 = −1 ∴ x2 + y2 = 9,

i.e., the circle of radius 3 centered at the origin. The
domain of integration, call it D, is the closed disk
bounded by that circle. We can express the volume
of the solid as a double integral in polar coordi-
nates x = r cosϕ, y = r sinϕ, det(JF) = r:

y

z

x

"
D

(
8− x2 − y2 − (−1)

)
dxdy =

∫ 3

0

(∫ 2π

0
(9− r2)r dϕ

)
dr = 2π

∫ 3

0
(9r − r3)dr

= 2π
(

9r2

2
− r

4

4

) ∣∣∣∣∣r=3

r=0
=

81π
2

.

Solution to problem 3.8, page 17: Polar coordinates are an ideal choice for this

problem. The boundaries for r and ϕ for that quarter of the disk D in polar
coordinates are 0 ≤ r ≤ R and 0 ≤ ϕ ≤ π

2 . Moreover,

ρ(x,y) =
√
x2 + y2 =

√
r2 cos2ϕ + r2 sin2ϕ = r.

Hence, the integral for the mass of D is

m =
"

D

√
x2 + y2 dxdy =

∫ R

0

∫ π
2

0
r · r dϕ

dr =
π
2

∫ R

0
r2 dr

=
πr3

6

∣∣∣∣∣r=R
r=0

=
πR3

6
.

x

y

R

R
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The coordinates of the center of mass are

x∗ =
1
m

"
D
x
√
x2 + y2 dxdy =

6
πR3

∫ R

0

∫ π
2

0
r2 cosϕ · r dϕ

dr
=

6
πR3

(∫ R

0
r3 dr

)∫ π
2

0
cosϕdϕ

 =
6
πR3 ·

R4

4
· 1 =

3R
2π

,

and

y∗ =
1
m

"
D
y
√
x2 + y2 dxdy =

6
πR3

∫ R

0

∫ π
2

0
r2 sinϕ · r dϕ

dr
=

6
πR3

(∫ R

0
r3 dr

)∫ π
2

0
sinϕdϕ

 =
6
πR3 ·

R4

4
· 1 =

3R
2π

.

Solution to problem 3.9, page 18: The surface z2 = x2 + y2 is an infinite cone
with (double) apex at the origin, while the surface
x2 + y2 + z2 = 4 is the sphere of radius 2 centered at
the origin. Since z ≥ 0, our domain of integration
D is the ‘top’ conical cutout from the ball of radius
2 centered at the origin. In spherical coordinates,
that domain is given by boundaries

0 ≤ r ≤ 2 , 0 ≤ ϕ ≤ 2π ,
π
4
≤ θ ≤ π

2
.

Hence,

y

z

x

m =
$

D
ρ(x,y,z)dxdydz =

∫ 2

0

∫ 2π

0

∫ π
2

π
4

r2 cosθdθ

dϕdr
=

(∫ 2

0
r2 dr

)(∫ 2π

0
dϕ

)∫ π
2

π
4

cosθdθ

 =
(
r3

3

∣∣∣∣∣r=2

r=0

)
· 2π · sinθ

∣∣∣∣∣θ= π
2

θ= π
4

=
8
3
· 2π ·

(
1−
√

2
2

)
=

8π(2−
√

2)
3

.

Judging from the symmetry of our domain (and the fact that ρ is constant),
we deduce that x∗ = 0 and y∗ = 0. (Still, the reader is invited to verify that by
evaluating corresponding integrals.) For z∗ we have

z∗ =
1
m

$
D
zρ(x,y,z)dxdydz

=
3

8π(2−
√

2)

∫ 2

0

∫ 2π

0

∫ π
2

π
4

r sinθ · r2 cosθdθ

dϕdr
=

3

8π(2−
√

2)

(∫ 2

0
r3 dr

)(∫ 2π

0
dϕ

)∫ π
2

π
4

sinθ cosθdθ


=

3

8π(2−
√

2)
· 2

4

4
· 2π · 1

4
=

3(2 +
√

2)
8

,
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since ∫ π
2

π
4

sinθ cosθdθ =
1
2

∫ π
2

π
4

sin(2θ)dθ =
−cos(2θ)

4

∣∣∣∣∣θ= π
2

θ= π
4

=
1 + 0

4
=

1
4

.

Solution to problem 3.10, page 18: We can rewrite the inequality x2 +y2 +z2 ≤
2z of our domain D as

x2 + y2 + z2 − 2z+ 1 ≤ 1 ∴ x2 + y2 + (z − 1)2 ≤ 1,

i.e., our domain of integration is the ball of radius
1 centered at (0,0,1). If we ‘plug spherical coordi-
nates’ into the inequality x2+y2+z2 ≤ 2z, we obtain

r2 ≤ 2r sinθ,

and, since r ≥ 0,

r ≤ 2sinθ,

which gives us integration boundaries for r.

y

z

x

Let’s start with the mass of this ball. Since ρ(x,y,z) =
√
x2 + y2 + z2 = r, we

have

m =
$

D

√
x2 + y2 + z2 dxdydz =

∫ 2π

0

∫ π
2

0

(∫ 2sinθ

0
r · r2 cosθdr

)
dθ

dϕ
=

(∫ 2π

0
dϕ

)∫ π
2

0
cosθ · r

4

4

∣∣∣∣∣r=2sinθ

r=0
dθ

 = 2π
∫ π

2

0
4cosθ sin4θdθ

= 8π
∫ 1

0
t4 dt =

8π
5

,

where a new variable t = sinθ was introduced in the last line.
Now the coordinates of the center of mass; let’s start with

z∗ =
1
m

$
D
z
√
x2 + y2 + z2 dxdydz

=
5

8π

∫ 2π

0

∫ π
2

0

(∫ 2sinθ

0
r sinθ · r · r2 cosθdr

)
dθ

dϕ
=

5
8π
· 2π

∫ π
2

0
sinθ cosθ

r5

5

∣∣∣∣∣r=2sinθ

r=0
dθ = 8

∫ π
2

0
cosθ sin6θdθ

= 8
∫ 1

0
t6 dt =

8
7

.

Note that x∗ = 0 and y∗ = 0, since
∫ 2π

0 cosϕdϕ = 0 and
∫ 2π

0 sinϕdϕ = 0. (The
reader is invited to work out the details.)
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Solution to problem 3.11, page 18: From y2 − 2 ≤ 2− x2 we get x2 + y2 ≤ 4, i.e.,
the projection of this solid onto the xy-plane is the disk of radius 2 centered at
the origin.

The volume is

V =
$

D
dxdydz =

∫ 2

0

∫ 2π

0

∫ 2−r2 cos2ϕ

r2 sin2ϕ−2
r dz

dϕdr
=

∫ 2

0

(∫ 2π

0
(4− r2)r dϕ

)
dr = 2π

(
2r2 − r

4

4

) ∣∣∣∣∣r=2

r=0
= 8π.

For the mass, we get

m =
$

D
y2 dxdydz =

∫ 2

0

∫ 2π

0

∫ 2−r2 cos2ϕ

r2 sin2ϕ−2
r2 sin2ϕ · r dz

dϕdr
=

∫ 2

0

(∫ 2π

0
(4− r2)r3 sin2 ϕdϕ

)
dr =

(∫ 2π

0
sin2ϕdϕ

)(∫ 2

0
(4r3 − r5)dr

)
=

1
2
· 2π ·

(
r4 − r

6

6

) ∣∣∣∣∣r=2

r=0
=

16π
3

.

Solution to problem 3.12, page 18:

(a) Let’s start with the evaluation of the gradient of f ; grad(f ) =
[
∂f
∂x ,

∂f
∂y

]T
,

or the two partial derivatives:

∂f

∂x
= 3x2 − 8x+ 2y ,

∂f

∂y
= 2x − 2y.

Stationary points of f are solutions of grad(f ) = 0, i.e.,

∂f

∂x
= 0 ∴ 3x2 − 8x+ 2y = 0,

∂f

∂y
= 0 ∴ 2x − 2y = 0.

We get y = x from the second equation and, plugging this into the first
equation, we get

3x2 − 6x = 0 ∴ 3x(x − 2) = 0,

i.e., x1 = 0, x2 = 2, so the stationary points of f are T1(0,0) and T2(2,2).
We’ll use the Hesse matrix of f to determine the type of these stationary
points:

Hf (x,y) = Jgrad(f )(x,y) =


∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

 =
[
6x − 8 2

2 −2

]
.

In particular, at the stationary points T1 and T2, we have

H1 :=Hf (0,0) =
[
−8 2
2 −2

]
and H2 :=Hf (2,2) =

[
4 2
2 −2

]
.
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Now, det(H1) = 12 and, since the (1,1)-entry of H1 is −8 < 0, the matrix
H1 is negative definite by the Sylvester’s criterion. Hence, T1 is a local
maximum. For H2, we have det(H2) = −12, so the two (real) eigenvalues
of H2 are of opposite signs, H2 is indefinite, and T2 is a saddle point (i.e.,
not a local extremum).

(b) Let’s find stationary points first:

∂g

∂x
= (x+ 1)ex = 0,

∂g

∂y
= 2(y + 1)ey = 0.

This system is particularly simple, and (x1, y1) = (−1,−1) is the only so-
lution. So T1(−1,−1) is the stationary point of g.
The Hesse matrix of g is

Hg (x,y) =
[
(x+ 2)ex 0

0 2(y + 2)ey

]
,

which, evaluated at the stationary point T1, is

H1 :=Hg (−1,−1) =
[

1
e 0
0 2

e

]
.

Now, this is a diagonal matrix with positive diagonal entries, i.e., all
eigenvalues of H1 are positive and T1 is a local minimum.

(c) Again, we start with the stationary points:

∂h
∂x

= −(1 + ey)sinx = 0,

∂h
∂y

= ey(cosx − y − 1) = 0.

First equation forces sinx = 0, i.e., xk = kπ for k ∈ Z. Plugging this
into the second equation we get cos(xk) − y − 1 = (−1)k − y − 1 = 0 or
yk = (−1)k − 1. (That is, yk = 0 for k even and yk = −2 for k odd.) There
are infinitely many stationary points Tk(kπ, (−1)k−1), one for each k ∈Z.
Now, the Hesse matrix of h is

Hh(x,y) =
[
−(1 + ey)cosx −ey sinx
−ey sinx ey(cosx − y − 2)

]
,

which, at stationary points Tk evaluates to

Hk :=Hh(kπ,0) =
[
−2 0
0 −1

]
for k even,

and Hk :=Hh(kπ,−2) =
[
1 + 2

e2 0
0 − 1

e2

]
for k odd.

Hence, for k even Hk is negative definite (since all its eigenvalues are
negative), and Tk is a local maximum for k even. For k oddHk is indefinite
(since it has a positive and a negative eigenvalue), so Tk is a saddle point
for k odd.
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(d) Again, we start with the stationary points:

∂k
∂x

= 3x2 − 3yz = 0,

∂k
∂y

= 3y2 − 3xz = 0,

∂k
∂y

= 6z − 3xy = 0.

Third equation implies z = xy
2 . We plug this into first two equations to

get

3x2 − 3y ·
xy

2
= 0 ∴ 3x

(
x −

y2

2

)
= 0,

3y2 − 3x ·
xy

2
= 0 ∴ 3y

(
y − x

2

2

)
= 0.

From the first one of these two equations we conclude that either x = 0

or x = y2

2 . In case x = 0, we get y = 0 from the second equation, and,
since z = xy

2 , z = 0. We have the first stationary point T1(0,0,0). In case

x = y2

2 we have

3y
(
y −

y4

8

)
= 0 ∴ 3y2

(
1−

y3

8

)
= 0.

Since we already covered the case y = 0, the only remaining option is
y = 2, and therefore x = 2 and z = 2. The second stationary point of k is
T2(2,2,2).
Now, the Hesse matrix is

Hk(x,y,z) =

 6x −3z −3y
−3z 6y −3x
−3y −3x 6

 .

Evaluating at stationary points T1(0,0,0) and T2(2,2,2) we have

H1 :=Hk(0,0,0) =

0 0 0
0 0 0
0 0 6

 and H2 :=Hk(2,2,2) =

12 −6 −6
−6 12 −6
−6 −6 6

 .

The matrixH1 is semidefinite (but not definite), hence the type of station-
ary point T1 cannot be determined from second derivatives alone. (And
we’ll leave T1 as is—of undetermined type.) We’ll use Sylvester’s crite-
rion to determine the definiteness (or lack of it) for H2. We have

12 > 0 ,
∣∣∣∣∣12 −6
−6 12

∣∣∣∣∣ = 108 > 0 , det(H2) = −648 < 0,

i.e., H2 is indefinite and T2 is a saddle point.
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(e) Note that the function r is not sensitive to a permutation of variables,
so all three partial derivatives can be obtained from ∂r

∂x with a suitable
permutation of variables.
Let’s start with the stationary points:

∂r
∂x

= 2x − 2yz = 0,

∂r
∂y

= 2y − 2xz = 0,

∂r
∂x

= 2z − 2xy = 0.

From the third equation, we have z = xy, therefore the first two equa-
tions become

x − y · xy = x(1− y2) = 0,

y − x · xy = y(1− x2) = 0.

From the first equation we have that either x = 0 or 1 − y2 = 0. In case
x = 0, we have z = 0 and also y = 0 from the second original equation.
The first stationary point is T1(0,0,0). In case y = ±1 we get ±1 ·(1−x2) =
0, so x = ±1. (N.b.: We have the two possibilities x = ±1 for each of
the possibilities y = ±1.) Since z = xy, we get four additional stationary
points

T2(−1,−1,1) , T3(−1,1,−1) , T4(1,−1,−1) , and T5(1,1,1).

The Hesse matrix is

Hr (x,y,z) =

 2 −2z −2y
−2z 2 −2x
−2y −2x 2

 .

Evaluating this at stationary points T1, . . . ,T5 and denoting these matri-
ces by H1, . . . ,H5 we obtain

H1 =

2 0 0
0 2 0
0 0 2

 , H2 =

 2 −2 2
−2 2 2
2 2 2

 , H3 =

 2 2 −2
2 2 2
−2 2 2

 ,

H4 =

2 2 2
2 2 −2
2 −2 2

 , H5 =

 2 −2 −2
−2 2 −2
−2 −2 2

 .

Now, H1 is clearly positive definite, so T1 is a local minimum. Note that
H2, . . . ,H5 are indefinite by the Sylvester’s criterion, i.e., they all have
the (1,1)-entry positive, while det(H2) = · · · = det(H5) = −32. (In fact,
the matrices H2, . . . ,H5 all have eigenvalues −2,4,4.) Hence, T2, . . .T5 are
saddle points.

(f) Stationary points:

∂u
∂x

= 3x2 − 3y = 0,

∂u
∂y

= 3y2 − 3x = 0.
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So, from the first equation, y = x2, hence x4 − x = x(x3 − 1) = 0 from
the second equation. This gives us x1 = 0 and x2 = 1, hence y1 = 0 and
y2 = 1. We have two stationary points, T1(0,0) and T2(1,1).
The Hesse matrix is

Hu(x,y) =
[
6x −3
−3 6y

]
,

and, evaluating at stationary points we get

H1 :=Hu(0,0) =
[

0 −3
−3 0

]
and H2 :=Hu(1,1) =

[
6 −3
−3 6

]
.

A quick application of Sylvester’s criterion reveals that H1 is indefinite,
while H2 is positive definite. Therefore, T1 is a saddle point, and T2 is a
local minimum.

(g) Stationary points:

∂v
∂x

= 6xy − 6x = 0,

∂v
∂y

= 3x2 + 3y2 − 6y = 0.

First equation is equivalent to 6x(y − 1) = 0 so we have either x = 0 or
y = 1.

• Plugging x = 0 into the second equation we get 3y2 − 6y = 0, hence
y = 0 or y = 2.

• Plugging y = 1 into the second equation we get 3x2 − 3 = 0, hence
x = −1 or x = 1.

All in all, we have four stationary points: T1(0,0), T2(0,2), T3(−1,1), and
T4(1,1).
The Hesse matrix of v is

Hv(x,y) =
[
6y − 6 6x

6x 6y − 6

]
,

which, evaluated at T1, . . . ,T4 and denoted by H1, . . . ,H4 become

H1 =
[
−6 0
0 −6

]
, H2 =

[
6 0
0 6

]
, H3 =

[
0 −6
−6 0

]
, and H4 =

[
0 6
6 0

]
.

Now, H1 is clearly negative definite, so T1 is a local maximum. Also clear
is positive definiteness of H2, so T2 is a local minimum. The matrices H3
and H4 are not definite, so T3 and T4 are saddle points.

Solution to problem 3.13, page 18: Given a,b ∈Rn let f (x) = (xTa)(xTb).

(a) The formula for f (x) can be rewritten as

f (x) = (xTa)(bTx) = xT(abT)x.

Therefore, from the formula ∂(xTAx)
∂x = xT(A+AT), we get

∂f

∂x
= xT(abT +baT),
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and, from the formula ∂Ax
∂x = A, we also get

∂2f

∂x2 =
∂
∂x

(
∂f

∂x

)T
= (abT +baT).

(b) One stationary point of f is 0, i.e., one of the solutions of ∂f
∂x (x) = 0. (All

stationary points of f are determined by the nullspace N (abT + baT).)
Since a and b are orthogonal, i.e., aTb = bTa = 0, we have

(abT +baT)a = ∥a∥2b,

(abT +baT)b = ∥b∥2a.

Let U be the vector subspace of Rn spanned by a and b. From the two
equalities above, we see that, restricted to U with the vector space basis
{a,b}, the Hesse matrix of f is represented by[

0 ∥a∥2
∥b∥2 0

]
,

which has eigenvalues λ1,2 = ±∥a∥∥b∥. Hence, ∂
2f
∂x2 is indefinite, since it

has a positive and a negative eigenvalue, so 0 is a saddle point. (Note that,

since the Hesse matrix ∂2f
∂x2 is constant, the whole nullspaceN (abT+baT)

consists of saddle points.)

Solution to problem 3.14, page 19: We are trying to minimize the function

f (x) = ∥x− a1∥2 + ∥x− a2∥2 + · · ·+ ∥x− ak∥2.

Note that ∥x− ai∥2 = (x− ai)T(x− ai), so

∂f

∂x
= 2(x− a1)T + 2(x− a2)T + · · ·+ 2(x− ak)T = 2

(
kx−

k∑
i=1

ai
)T

.

The stationary point of f (the solution to ∂f
∂x (x) = 0) is therefore

x =
1
k

(a1 + a2 + · · ·+ ak) .

Note that the Hesse matrix of f is ∂2f
∂x2 = 2kI (with n-fold eigenvalue 2k), which

is positive definite, so our stationary point is in fact a (local) minimum.

Solution to problem 3.15, page 19: The problem is to find the extreme val-

ues of the function f (x,y) = 2x2 + y2 constrained to the (closed and bounded)
domain given by 4(x − 1)2 + y2 ≤ 16. We split this into two subtasks.

• Find the candidates for extreme values of f in the interior of the domain,
i.e., subject to strict inequality 4(x − 1)2 + y2 < 16. Extreme values of f
over the entire domain that are attained at interior points (and not at the
boundary points) must be local extrema of f .
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• Find the candidates for extreme values of f on the boundary of the do-
main, i.e., subject to equality 4(x−1)2 +y2 = 16. These will be determined
using the method of Lagrange multipliers.

Let’s start with the interior. Stationary points of f are solutions of the system

∂f

∂x
= 4x = 0,

∂f

∂y
= 2y = 0.

Clearly, x1 = 0, y1 = 0 is the only solution of this system, i.e., T1(0,0) is the only
stationary point of f . This point is contained in the interior of our domain
(since 4(0− 1)2 + 02 = 4 < 16 holds).

Now the boundary. Let’s rewrite the equation 4(x − 1)2 + y2 = 16 as

4(x − 1)2 + y2 − 16︸                 ︷︷                 ︸
g(x,y)

= 0,

i.e., we have rewritten the constraint as g(x,y) = 0. The corresponding La-
grange function is

L(x,y,λ) = f (x,y)−λg(x,y) = 2x2 + y2 −λ(4(x − 1)2 + y2 − 16).

Candidates for extrema on the boundary are the stationary points of this La-
grange function. (Strictly speaking, we only need the x and y coordinates of
these stationary points.) Stationary points of L are solutions of the system

∂L
∂x

= 4x − 8λ(x − 1) = 0,

∂L
∂y

= 2y − 2λy = 0,

∂L
∂λ

= −(4(x − 1)2 + y2 − 16) = 0.

(The last equation is, of course, equivalent to our constraint.) From the second
equation we get 2y(1−λ) = 0, which implies y = 0 or λ = 1.

• The case y2,3 = 0 can be plugged directly into the third equation, and we
get (x − 1)2 = 4 or x2 = −1 and x3 = 3.

• In case λ = 1 we get −4x = −8 from the first equation, or x4,5 = 2. Plugging
this into the third equation we have y2 = 12 or y4,5 = ±2

√
3.

Summarizing, we have the following five points, which are candidates for
global extrema of f on our domain:

T (x,y) T1(0,0) T2(−1,0) T3(3,0) T4(2,−2
√

3) T5(2,2
√

3)
f (x,y) 0 2 18 20 20

.

The bottom row contains the values of f evaluated at corresponding stationary
points. Clearly, the smallest value, 0, is attained at T1(0,0), while the largest
value, 20, is attained at two points, T4(2,−2

√
3) and T5(2,2

√
3).
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Solution to problem 3.16, page 19: The first octant is defined by inequalities
x ≥ 0, y ≥ 0, and z ≥ 0. So, along with x + y + z = 5, we have four constraints.
We’ll split the task into following subtasks:

• Find candidates for extrema in the interior of the triangle T . That means
extrema of g with respect to one constraint, namely x+y+z = 5. Addition-
ally, only candidates with x > 0, y > 0, and z > 0 should be considered.

• Find candidates for extrema on the edges of the triangle T . That means
extrema of g with respect to two constraints, x + y + z = 5 and one of the
planes x = 0, y = 0, or z = 0.

Let’s start with the interior of T . The Lagrange function is

L(x,y,z,λ) = xy2z2 −λ(x+ y + z − 5).

Its stationary points are solutions of

∂L
∂x

= y2z2 −λ = 0,

∂L
∂y

= 2xyz2 −λ = 0,

∂L
∂z

= 2xy2z −λ = 0,

∂L
∂λ

= −(x+ y + z − 5) = 0.

From the first three equations we have y2z2 = 2xyz2 = 2xy2z. Since we only
need to consider candidates with x > 0, y > 0, and z > 0, we can safely ignore
the solutions with any of the x, y, or z equal to 0. Hence:

y2z2 = 2xyz2 ∴ y = 2x and

2xyz2 = 2xy2z ∴ z = y ∴ z = 2x.

Plugging this into the equation of the constraint, we get 5x−5 = 0 or x = 1. So,
T1(1,2,2) is our first candidate.

We could define Lagrange functions with two Lagrange multipliers for each
of the edges of the triagle, but, due to the simplicity of the additional con-
straints, we don’t have to. Simply plugging x = 0, y = 0, or z = 0 into g will
simplify our task. A lot!

• If x = 0, then g(0, y,z) = 0.

• If y = 0, then g(x,0, z) = 0.

• If z = 0, then g(x,y,0) = 0.

That means that g is constant (and 0) along all edges of the triangle T . At
T1(1,2,2), however, the value of g is

g(1,2,2) = 16.

So, the largest value of g on T is 16.
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Solution to problem 3.17, page 19: The equation

x2 − xy + y2 = 3

represents the constraint in this task. The expression we’re trying to maximize
is ∥x∥ =

√
x2 + y2. Dealing with square roots can be cumbersome, and we’ll see

that it’s preferable to maximize

f (x,y) = x2 + y2

instead. (N.b.: If v is a multivariate function, then every stationary point of v
is also a stationary point of v2. Why?)

So we rewrite the constraint

x2 − xy + y2 − 3 = 0

and form the corresponding Lagrange function

L(x,y,λ) = x2 + y2 −λ(x2 − xy + y2 − 3).

Its stationary points are solutions of

∂L
∂x

= 2x −λ(2x − y) = 0,

∂L
∂y

= 2y −λ(2y − x) = 0,

∂L
∂λ

= −(x2 − xy + y2 − 3) = 0.

This system is a bit trickier. We can assume λ , 0 (since λ = 0 would imply
x = 0 and y = 0 from first two equations) and rewrite the first two equations as

1
λ

=
2x − y

2x
and

1
λ

=
2y − x

2y
.

Therefore

2x − y
2x

=
2y − x

2y
∴ 2xy − 2y2 = 2xy − 2x2 ∴ x2 = y2 or y = ±x.

Now we plug both cases of y = ±x into the constraint (or the third equation).

• In case y = −x we have 3x2 − 3 = 0 or x1,2 = ±1.

• In case y = x we have x2 − 3 = 0 or x3,4 = ±
√

3.

Let’s summarize with a table

T (x,x) T1(−1,1) T2(1,−1) T3(−
√

3,−
√

3) T4(
√

3,
√

3)
f (x,y) 2 2 6 6

.

The largest value in the bottom row is 6, so the points T3 and T4 are farthest away
from the origin (at a distance

√
6).



CHAPTER 4. SOLUTIONS 78

Solution to problem 3.18, page 19: As usual we prefer to maximize the square

of the distance from the origin rather than the distance itself. The Lagrange
function is

L(x,y,λ) = x2 + y2 −λ
(
(x2 + y2)2 − x3 − y3

)
.

The system for the stationary points of L is:

∂L
∂x

= 2x −λ
(
4x(x2 + y2)− 3x2

)
= 0,

∂L
∂y

= 2y −λ
(
4y(x2 + y2)− 3y2

)
= 0,

∂L
∂λ

= −
(
(x2 + y2)2 − x3 − y3

)
= 0.

One obvious solution is (x,y) = (0,0). We can discard this solution (since this
is the origin itself) by crossing out one of the x and y factors in the first two
equations and then express the λ variable in two ways

2
λ

= 4(x2 + y2)− 3x,

2
λ

= 4(x2 + y2)− 3y.

By identifying these two equations we get x = y (all this assuming neither x nor
y equals 0), and then the constraint gives us the equation

4x4 = 2x3

with x = 1
2 as the only non-zero solution.

However, it is possible that only one of the variables equals zero and we
still get a valid solution. Assume x = 0 and y , 0. The constraint then reduces
to the equation

y4 = y3

which yields y = 1. We can then directly verify that (x,y) = (0,1) (with λ = 2)
solves our system and is therefore a stationary point.

Similarly, assuming x , 0 and y = 0 leads to stationary point (x,y) = (1,0).
Out of the three non-trivial stationary points ( 1

2 ,
1
2 ), (0,1) and (1,0) we see

that the latter two attain the maximal distance from the origin.

Solution to problem 3.19, page 19:

(a) The extremal values of f can be situated either in the (strict) interior of
the disk or on its boundary and we consider both possibilities separately.
First, any extremal point in the interior of the disc must be a stationary
point for f . The system for the stationary points is

∂f

∂x
= y + 1 = 0,

∂f

∂y
= x − 1 = 0,
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with solution (x,y) = (1,−1). We can verify that this point lies in the
interior of our disk but if we compute the Hesse matrix

Hf (x,y) =
[
0 1
1 0

]
we notice this is a saddle point not an extremal point (the eigenvalues
λ1,2 = ±1 are of opposite signs).
So the extremal points must be on the boundary of the disk, on the circle
x2 + y2 = 2. The relevant Lagrange function for the problem is

L(x,y,λ) = xy − y + x − 1−λ(x2 + y2 − 2)

and the system for the stationary points is

∂L
∂x

= y + 1− 2λx = 0,

∂L
∂y

= x − 1− 2λy = 0,

∂L
∂λ

= −(x2 + y2 − 2) = 0.

From the first two equations we express 2λ

2λ =
y + 1
x

and 2λ =
x − 1
y

.

This leads to
y + 1
x

=
x − 1
y

∴ y2 + y = x2 − x.

By adding x2 to both sides we get the identity

x2 + y2 + y = 2x2 − x

and considering the constraint x2 + y2 = 2 this gives the expression

y = 2x2 − x − 2.

By plugging this expression for y back into the constraint equation we
get an equation for x.

x2 + (2x2 − x − 2)2 = 2 ∴ 2x4 − 2x3 − 3x2 + 2x+ 1 = 0.

This is a quartic equation which in general has quite complicated solu-
tions. Fortunately, we can guess two integer roots x1 = 1 and x2 = −1.
This means the polynomial is divisible by the factor x2 −1 and comput-
ing the polynomial quotient gives

2x4 − 2x3 − 3x2 + 2x+ 1
x2 − 1

= 2x2 − 2x − 1,

which is the factor from which we can compute the remaining two roots

x3,4 =
1±
√

3
2

.

We summarize all four stationary points along with the function values
in a table
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T (x,y) T1(−1,1) T2(1,−1) T3( 1+
√

3
2 , −1+

√
3

2 ) T4( 1−
√

3
2 , −1−

√
3

2 )
f (x,y) −4 0 1

2
1
2

.

The minimum value of f is therefore attained at T1, while the maximal
value is attained at both, T3 and T4.

(b) Comparing to Exercise 3.19 (a), it is clear that any extremal points com-
puted in (a) that happen to lie in the half-plane x ≥ 0 are also extremal
points for f on the half disk. We notice that T3 does indeed lie in the
half-plane x ≥ 0 which means it is where the maximum of f on our
half-disk. The point T1 however does not lie in the half-disk. Since the
minimum is not attained in the interior of the half disk nor the edge
x2 + y2 = 2, it must be on the edge with x = 0.
The Lagrangian function for f with the constraint x = 0 is

L(x,y,λ) = xy − y + x − 1−λx

The system for the stationary points is

∂L
∂x

= y + 1−λ = 0,

∂L
∂y

= x − 1 = 0,

∂L
∂λ

= −x = 0

This is a contradictory system which means f has no stationary points
on the (whole) line x = 0 (this is also clear directly since f (0, y) = −y).
The last possibility is that the minimum is attained on the edge of both
the circle x2 + y2 = 2 and line x = 0, i.e., the ‘corner’ points T5(0,−

√
2)

and T6(0,
√

2). The values of f at these points are
√

2 − 1 and −
√

2 − 1
respectively, which means the minimum value of f on our half-disk is
achieved at the T6 ‘corner’ point of the half-disk.

Solution to problem 3.20, page 19: In this task, the equation of the ellipsoid,

rewritten as
x2

a2 +
y2

b2 +
z2

c2 − 1 = 0,

represents the constraint. An inscribed box with vertices on this ellipsoid has
edges of length 2x, 2y, and 2z.

(a) The inscribed box has volume V (x,y,z) = 2x · 2y · 2z = 8xyz and this is
the function we’d like to maximize with respect to the constraint above.
The corresponding Lagrange function is

L(x,y,z,λ) = 8xyz −λ
(
x2

a2 +
y2

b2 +
z2

c2 − 1
)

.
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The system that determines the stationary points of L is:

∂L
∂x

= 8yz − 2λx
a2 = 0,

∂L
∂y

= 8xz −
2λy
b2 = 0,

∂L
∂z

= 8xy − 2λz
c2 = 0,

∂L
∂λ

= −
(
x2

a2 +
y2

b2 +
z2

c2 − 1
)

= 0.

Multiplying the first three equations with yz, xz, and xy respectively,
and then rearranging we obtain

4a2y2z2 = λxyz,

4b2x2z2 = λxyz,

4c2x2y2 = λxyz,

and, ignoring cases with x = 0, y = 0, or z = 0 (Why?), we deduce

x2

a2 =
y2

b2 =
z2

c2 .

Pluging this into the constraint we get

3 · x
2

a2 = 1 , 3 ·
y2

b2 = 1 , and 3 · z
2

c2 = 1,

i.e., x = ± a√
3

, y = ± b√
3

, and z = ± c√
3

. Ignoring the signs (and solutions

with any of the edge lengths equal to 0), we deduce that

V
( a
√

3
,
b
√

3
,
c
√

3

)
=

8abc

3
√

3

is the largest possible volume of the inscribed rectangular box.
(b) We just need to replace the function to maximize, in this subtask it is

S(x,y,z) = 2x · 2y + 2x · 2z+ 2y · 2z = 4(xy + xz+ yz).

As we will see, we are now presented with a slightly more formidable
problem. Anyway, let’s see how long we can consider this in full gener-
ality. The Lagrange function becomes

L(x,y,z,λ) = 4(xy + xz+ yz)−λ
(
x2

a2 +
y2

b2 +
z2

c2 − 1
)

.
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Its stationary points are solutions of

∂L
∂x

= 4(y + z)− 2λx
a2 = 0,

∂L
∂y

= 4(x+ z)−
2λy
b2 = 0,

∂L
∂z

= 4(x+ y)− 2λz
c2 = 0,

∂L
∂λ

= −
(
x2

a2 +
y2

b2 +
z2

c2 − 1
)

= 0.

Now, we multiply the first three equations with a2

2 , b
2

2 , and c2

2 , respec-
tively, to obtain

2a2(y + z) = λx,

2b2(x+ z) = λy,

2c2(x+ y) = λz.

This is now an eigenvalue problem. Namely, setting

A =

 0 2a2 2a2

2b2 0 2b2

2c2 2c2 0

 and x =

xy
z

 ,

the above system becomes Ax = λx. The characteristic polynomial of A
is

det(A−λI) = −λ3 + 4(a2b2 + a2c2 + b2c2)λ+ 16a2b2c2.

This is a so-called depressed cubic (it has no λ2 term) and while its zeros
can be directly expressed via Cardano’s formulae, we rather consider an
ellipsoid of revolution, i.e., simplified case c = b. The above characteris-
tic polynomial then becomes

det(A−λI) = −λ3 + 4(2a2b2 + b4)λ+ 16a2b4.

It is now (almost) obvious that λ1 = −2b2 is one of its zeros. To obtain
remaining two zeros we first divide det(A−λI) by λ+ 2b2:

−λ3 + 4(2a2b2 + b4)λ+ 16a2b4

λ+ 2b2 = −λ2 + 2b2λ+ 8a2b2.

The zeros of this quadratic polynomial are

λ2,3 = b2 ±
√

8a2b2 + b4.

Now that the possible λ’s are known, let’s determine x = [x,y,z]T. Those
would be the eigenvectors of A subject to the ‘normalization constraint’

x2

a2 +
y2

b2 +
z2

b2 = 1.
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• Start with λ1 = −2b2. We have (assuming a , b)

A−λ1I =

2b
2 2a2 2a2

2b2 2b2 2b2

2b2 2b2 2b2

 ∼
1 0 0
0 1 1
0 0 0

 ,

hence x = z[0,1,−1]T for arbitrary (free variable) z ∈ R. That won’t
produce a solution of interest, since x = 0.

• Next one is λ2 = b2 +
√

8a2b2 + b4. We get

A−λ2I =


b2 −
√

8a2b2 + b4 2a2 2a2

2b2 −b2 −
√

8a2b2 + b4 2b2

2b2 2b2 −b2 −
√

8a2b2 + b4


∼


1 0 1

2

(
1−

√
8 a

2

b2 + 1
)

0 1 −1
0 0 0

 .

Therefore, a general eigenvector corresponding to λ2 is

x = z


1
2

(√
8 a

2

b2 + 1− 1
)

1
1


for arbitrary z ∈ R. A little more work shows that z which respects

the constraint x2

a2 + y2

b2 + z2

b2 = 1 is

z =
ab√

γ2b2 + 2a2
, where γ =

√
8a2b2 + b4 − b2

2b2 .

We will not continue to express x in full, but it is already clear that
x = [γz,z,z]T. Hence

S(γz,z,z) = 4γz2 + 4γz2 + 4z2 = z2(8γ + 4) =
(8γ + 4)a2b2

γ2b2 + 2a2

= b2 +
√

8a2b2 + b4.

• The third and final case is λ3 = b2 −
√

8a2b2 + b4. Now we obtain

A−λ3I =


b2 +
√

8a2b2 + b4 2a2 2a2

2b2 −b2 +
√

8a2b2 + b4 2b2

2b2 2b2 −b2 +
√

8a2b2 + b4


∼


1 0 1

2

(
1 +

√
8 a

2

b2 + 1
)

0 1 −1
0 0 0

 .

Repeating the rest of analogous steps as for λ2 one would obtain

S(γz,z,z) = b2 −
√

8a2b2 + b4

which is clearly a negative number. (This time γ = −
√

8a2b2+b4+b2

2b2 .)
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In conclusion, the largest attainable surface area for a rectangular box
inscribed inside an ellipsoid of revolution is

S = b2 +
√

8a2b2 + b4.

(We will not explicitly express the side lengths of this rectangular box,
but an enthusiastic reader may well do so.)
A comment: Relying on intuition can sometimes fail. A sphere is a
special case of an ellipsoid (the one with c = b = a) and intuition would
say that the inscribed box with the largest volume or surface area is a
cube with side length 2a√

3
. (Which is correct!) Stretching the sphere

produces an ellipsoid and stretching the cube produces a rectangular
box. Now, intuition might say that we simply need to stretch the cube
which maximizes volume and surface area. The resulting volume and
surface area for an ellipsoid of revolution (c = b) would then be

V =
8ab2

3
√

3
and S =

8ab+ 4b2

3
.

While the formula for the maximal attainable volume is correct, the one
for maximal attainable area is false!

Solution to problem 3.21, page 20: Denote the lengths of the edges of this box

by a, b, and c. Since we assembled the box frame from a rod of length ℓ, we
must have 4a+ 4b+ 4c = ℓ. This is our constraint.

(a) The volume of the box is V (a,b,c) = abc, and this is precisely the func-
tion we must maximize, subject to the constraint above. Let’s rewrite
the constraint as

4a+ 4b+ 4c − ℓ = 0

and form the Lagrange function

L(a,b,c,λ) = abc −λ(4a+ 4b+ 4c − ℓ).

The stationary point of L are solutions of the system

∂L
∂a

= bc − 4λ = 0,

∂L
∂b

= ac − 4λ = 0,

∂L
∂c

= ab − 4λ = 0,

∂L
∂λ

= −(4a+ 4b+ 4c − ℓ) = 0.

We quickly gather from the first three equations that bc = ac = ab holds.
While we could safely ignore the solutions with any of the a, b, or c equal
to 0, let’s be strict (once) and find all solutions to this system.
If a = 0, then we must have λ = 0. (Consider either the second or the
third equation.) Now, from the first equation (and since λ = 0) we must
have either b = 0 or c = 0. If b = 0, we have c = ℓ

4 , if c = 0, we have b = ℓ
4 .
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There’s nothing special about starting the reasoning above with ‘if a = 0’.
The conclusion has the same form: Any solution with one of the a, b, or
c equal to 0, will force λ = 0, two of the a, b, and c equal to 0, and the
remaining one equal to ℓ

4 . These (a,b,c,λ)-solutions are

( ℓ4 ,0,0,0) , (0, ℓ4 ,0,0) , and (0,0, ℓ4 ,0).

They are also not the ones that interest us—the volume of the resulting
(degenerate) box is 0, i.e., these solutions represent the minima.
So let’s assume that none of the a, b, c are equal to 0. Then, from bc =
ac = ab, we deduce that b = a and c = b, i.e., a = b = c. Plugging this into
the constraint, we get a = ℓ

12 and

V
( ℓ

12
,
ℓ

12
,
ℓ

12

)
=

( ℓ
12

)3

is the largest possible volume of such a box frame. So the box frame
with largest possible volume we can assemble from a rod of length ℓ is
in fact a frame of a cube.

(b) The additional restriction is in fact an additional constraint, ab = Amust
hold. We’ll rewrite this as ab −A = 0. The Lagrange function will now
depend on two Lagrange multipliers, we’ll denote them by λ and µ:

L(a,b,c,λ,µ) = abc −λ(4a+ 4b+ 4c − ℓ)−µ(ab −A).

We now solve the system:

∂L
∂a

= bc − 4λ−µb = 0,

∂L
∂b

= ac − 4λ−µa = 0,

∂L
∂c

= ab − 4λ = 0,

∂L
∂λ

= −(4a+ 4b+ 4c − ℓ) = 0,

∂L
∂µ

= −(ab −A) = 0.

From the third equation we have 4λ = ab, and replacing 4λ with ab in
the first two equations we get

bc − ab −µb = 0 ∴ b(c − a−µ) = 0,

ac − ab −µa = 0 ∴ a(c − b −µ) = 0.

We’re assuming that A > 0, and, since ab = A (from the fifth equation),
a , 0 and b , 0. Hence,

c − a−µ = 0,

c − b −µ = 0,

which implies a = b. From the second constraint we now get a2 = A or
a =
√
A. (We ignore the negative solution, since the length cannot be
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negative.) To finish, we use the first constraint (the fourth equation in
our ‘Lagrange system’) to get 8

√
A+4c = ℓ or c = ℓ

4 −2
√
A. The maximum

possible volume in this case is therefore

V
(√
A,
√
A,
ℓ
4
− 2
√
A
)

= A ·
( ℓ

4
− 2
√
A
)
.

The solution is, in a sense, expected. We obtained a box with base rect-
angle a square with side length

√
A, the remainder of the rod length is

then used for four vertical edges.

Solution to problem 3.22, page 20: This is similar to the previous exercise.
Denote by a the side length of the base equilateral triangle and by h the prism’s
height. The volume of such a prism is

V (a,h) =
a2h
√

3
4

,

and its surface area is

A(a,h) =
a2
√

3
2

+ 3ah.

Having ℓ meters of the rod available, means that 6a+ 3h = ℓ. That will be our
constraint.

(a) We need to maximize V with respect to the constraint. The Lagrange
function is

L(a,h,λ) =
a2h
√

3
4
−λ(6a+ 3h− ℓ).

It stationary points are solutions of

∂L
∂a

=
ah
√

3
2
− 6λ = 0,

∂L
∂h

=
a2
√

3
4
− 3λ = 0,

∂L
∂λ

= −(6a+ 3h− ℓ) = 0.

Let’s multiply the first equation with 2 and the second one with 4 to get

ah
√

3− 12λ = 0,

a2
√

3− 12λ = 0.

From this we get

ah = a2 ∴ ah− a2 = 0 ∴ a(h− a) = 0.

Ignoring the solutions with a = 0, we get h = a. (The reader is invited to
consider the solutions we just ignored. What do they represent?) Hence,
from the constraint, we get 9a − ℓ = 0 or a = h = ℓ

9 . That means that we
need to cut up the rod into 9 pieces of equal lenght, and the resulting
maximal volume is

V
( ℓ

9
,
ℓ
9

)
=
ℓ3
√

3
4 · 93 .
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(b) We now need to maximize A with respect to our constraint. The La-
grange function is

L(a,h,λ) =
a2
√

3
2

+ 3ah−λ(6a+ 3h− ℓ).

It stationary points are now solutions of

∂L
∂a

= a
√

3 + 3h− 6λ = 0,

∂L
∂b

= 3a− 3λ = 0,

∂L
∂λ

= −(6a+ 3h− ℓ) = 0.

Note that λ = a from the second equation, and, plugging this into the
first equation, we get

a
√

3 + 3h− 6a = 0 ∴ 3h = (6−
√

3)a.

Substituting that instead of 3h into the third equation, we have

6a+ (6−
√

3)a− ℓ = 0 ∴ a =
ℓ

12−
√

3
=

12 +
√

3
141

ℓ � 0.09739ℓ,

and

3h =
(6−
√

3)ℓ

12−
√

3
∴ h =

(6−
√

3)ℓ

3(12−
√

3)
=

23− 2
√

3
141

ℓ � 0.13855ℓ.

The reader is invited to evaluate the resulting maximal attainable area.

Solution to problem 3.23, page 20:

(a) We’d like to find extreme values of the function f (x) = aTx subject to the
constraint ∥x∥ = d. We first rewrite the constraint as

∥x∥2 = d2 ∴ ∥x∥2 − d2 = 0 ∴ xTx− d2︸   ︷︷   ︸
g(x)

= 0

and set the Lagrange function as

L(x,λ) = f (x)−λg(x) = aTx−λ(xTx− d2).

The stationary points of L are again the solutions of the system

∂L
∂x

= aT − 2λxT = 0,

∂L
∂λ

= −(xTx− d2) = 0.

It follows from the first equation that a = 2λx, i.e., x and a are parallel.
Let’s write this as x = αa and plug it into the second equation:

α2aTa− d2 = 0 ∴ α2 =
d2

∥a∥2
∴ α = ± d

∥a∥
.
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Hence, vectors x, at which extreme values of f are attained, are

x = αa = ± d
∥a∥

a,

and these extreme values are

f
(
± d
∥a∥

a
)

= aT
(
± d
∥a∥

a
)

= ±d∥a∥.

(b) Extreme value of the expression aTx (the dot product of a and x) on
the sphere with equation ∥x∥ = d will be attained precisely when x is
parallel to a.

Solution to problem 3.24, page 20:

(a) Let’s rewrite the constraint as ∥x∥2 = d2 or xTx − d2 = 0. The Lagrange
function corresponding to our problem is

L(x,λ) = xTAx−λ(xTx− d2).

Its stationary points are, as usual, the solutions to the system

∂L
∂x

= xT(A+AT)− 2λxT = 0,

∂L
∂λ

= −(xTx− d2) = 0.

Note that the first (system of) equation(s) can be rewritten as

A+AT

2
x = λx,

i.e., x is an eigenvector of A+AT

2 (and λ is the corresponding eigenvalue).

(Since A+AT

2 is symmetric, its eigenvalues and its eigenvectors are real,
i.e., λ ∈R and x ∈Rn.) Another thing to notice is

xT
(A+AT

2

)
x =

1
2

(
xTAx+ xTATx

)
=

1
2
· 2xTAx = xTAx = f (x).

So, for an eigenvector x of A+AT

2 with ∥x∥ = d, we have

f (x) = xT
(A+AT

2

)
x = xTλx = λd2.

Finally, the extreme values of f subject to ∥x∥ = d can be identified as
λmaxd

2 and λmind
2, where λmax and λmin are the largest and the small-

est eigenvalues of A+AT

2 , respectively.

(b) Now the constraint is xTAx = d2, which we rewrite as xTAx−d2 = 0. For
the Lagrange function we have

L(x,µ) = xTx−µ(xTAx− d2).
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(The decision to denote the Lagrange multiplier by µ will become clear
later.) Its stationary points are solutions of

∂L
∂x

= 2xT − 2µxTA = 0,

∂L
∂µ

= −(xTAx− d2) = 0.

(We used the fact that A is symmetric when evaluating the first deriva-
tive.) Rewriting the first equation as

Ax =
1
µ
x,

we see that 1
µ must be an eigenvalue of A, with x the corresponding

eigenvector. (Note that 1
µ makes sense as an eigenvalue of A, since A is

a definite matrix.) From the second equation (the constraint), we now
obtain

xTAx = d2 ∴ xT
(

1
µ
x
)

= d2 ∴ ∥x∥2 = µd2 or f (x) = µd2.

Hence, denoting the smallest and the largest eigenvalues of A by λmin
and λmax, respectively, we have that

d2

λmin
is the largest value attained by f , and

d2

λmax
is the smallest value attained by f .

(We used that λ = 1
µ for an eigenvalue λ of A, and also the fact that the

eigenvalues of A are positive.)

Solution to problem 3.25, page 20:

(a) The inequality ∥x − p∥ ≤ d determines the closed
ball of radius d centered at p. We split the solution
into two subtasks: extrema in the interior (deter-
mined by ∥x−p∥ < d) and extrema on the boundary
(the sphere determined by ∥x−p∥ = d).

R
n

∥x−p∥ ≤ d

• The interior: This is easy, the only stationary point of f is x = 0 and
this is a candidate if and only if ∥p∥ < d, i.e., 0 is actually contained
in the interior.

• The boundary: Write the constraint as

∥x−p∥ = d ∴ ∥x−p∥2 − d2 = 0 ∴ (x−p)T(x−p)− d2 = 0,

and let’s set up the corresponding Lagrange function

L(x,λ) = xTx−λ
(
(x−p)T(x−p)− d2

)
.
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Now,

∂L
∂x

= 2xT −λ(2xT − 2pT) = 0T,

∂L
∂λ

= −
(
∥x−p∥2 − d2

)
= 0.

The first equation implies that (2− 2λ)x = −2λp, i.e., x and p must
be parallel. Let’s write this as x = αp for some α ∈ R and plug this
into the second equation

∥αp−p∥ = d ∴ ∥(α−1)p∥ = d ∴ |α−1| = d
∥p∥

∴ α = 1± d
∥p∥

.

Hence,

x =
(
1± d
∥p∥

)
p,

which should be the expected solution.

Finally, if ∥p∥ < d, then the minimal value of f is attained in the interior
at 0, and is f (0) = 0. In case ∥p∥ ≥ d, the minimal value of f is attained
on the boaundary at

(
1− d

∥p∥

)
p, and is equal to ∥p∥2 + d2 − 2d∥p∥. (As a

sanity check, notice that in the boundary case ∥p∥ = d that last expres-
sion is 0, as it should be.)

(b) The equation Ax = b determines an affine subspace
of Rn. The appropriate Lagrange function now is

L(x,λ) = xTx−λT(Ax−b).

(Note that λ is now a column vector, with each
component corresponding to one of the boundary
conditions!) Its stationary points are solutions of

Ax = b

R
n

∂L
∂x

= 2xT −λTA = 0T,

∂L
∂λ

= −(Ax−b) = 0.

From the first equation we have x = 1
2A

Tλ. We plug this into the second
equation to get

1
2
AATλ = b.

If we assume that A is of full rank (so that AAT is invertible), we can

express λ = 2
(
AAT

)−1
b, and therefore

x =
1
2
ATλ = AT

(
AAT

)−1
b.

(In general, i.e., for non-full rank matrices A, the solution is x = A+b,
where A+ is the Moore–Penrose inverse of A.)
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Finally, the minimal value of f on that affine subspace is

f
(
AT

(
AAT

)−1
b
)

= bT
(
AAT

)−1
AAT

(
AAT

)−1
b = bT

(
AAT

)−1
b

for the case when A is of full rank. (That −1 superscript needs to be
replaced by a + superscript for A which is not of full rank.)

(c) Let’s consider the boundary case first, i.e., we min-
imize f (x) = ∥x∥2 with respect to ∥x − p∥ = d and
Ax = b. The Lagrange function is

L(x,µ,λ) = xTx−µ(∥x−p∥2 − d2)−λT(Ax−b).

Its stationary points are solutions of the system

∥x−p∥ ≤ d
Ax = b

R
n

∂L
∂x

= 2xT − 2µ(x−p)T −λTA = 0T,

∂L
∂µ

= −(∥x−p∥2 − d2) = 0,

∂L
∂λ

= −(Ax−b) = 0.

Let’s start: From the first equation we get

(2− 2µ)x = ATλ− 2µp ∴ x =
1

2− 2µ

(
ATλ− 2µp

)
.

A side note: This last expression is not well defined if µ = 1. The case
µ = 1 implies that the first equation of the ‘Lagrange system’ does not
depend on x. (The first equation simplifies to 2p−ATλ = 0.) That means
that x is only determined by the second and the third equation which
describe a sphere in the affine subspace given by Ax = b. If that whole
sphere consists of stationary points of f (x) = ∥x∥2, i.e., f is constant on
that sphere, then the origin of that sphere is the orthogonal projection
of 0 onto the affine subspace Ax = b. (Namely, the origin of the sphere

is given by p = A+b = AT
(
AAT

)−1
b.) It is clear that in this case the

minimal value of f is attained at that origin, i.e., in the interior of the
ball bounded by that sphere and not on the boundary sphere itself.
So, assuming µ , 1 we plug x from above into the third equation to get

A
(
ATλ− 2µp

)
= (2− 2µ)b ∴ AATλ = (2− 2µ)b+ 2µAp,

hence
λ =

(
AAT

)−1
((2− 2µ)b+ 2µAp) .
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Now we plug this into the expression for x and obtain

x =
1

2− 2µ

(
AT

((
AAT

)−1
((2− 2µ)b+ 2µAp)

)
− 2µp

)
=

1
2− 2µ

(
(2− 2µ)AT

(
AAT

)−1
b+ 2µ(ATAp−p)

)
= AT

(
AAT

)−1
b+

µ

1−µ
(ATA− I)p

= AT
(
AAT

)−1
b+α(ATA− I)p,

where we introduced α = µ
1−µ in the last line. Finally, we use the con-

straint ∥x − p∥2 = d2. Plugging the above expression for x into it and
rearranging we obtain a quadratic equation for α, namely

α2pT(ATA− I)2p+ 2α
(
pTATb−pTAT(AAT)−1b−pT(ATA− I)p

)
+

+bT(AAT)−1b− 2pTAT(AAT)−1b+pTp− d2 = 0

Solving this equation for α and plugging the solution into our expres-
sion for x, we finally obtain the points, at which extreme values of
f (x) = xTx are attained. Conveniently, we leave that task to the reader.
A final case to consider: f attains its minimal value at a point in the
interior of the ball ∥x−p∥ ≤ d within the affine subspaceAx = b. This can
only happen if the orthogonal projection of 0 onto Ax = b is contained
in that ball, i.e., if ∥A+b − p∥ < d. In that case, the minimal value is the
same as in part (b) of this task.


	Linear algebra
	A recollection of basic concepts
	Schur, Frobenius, Eckart–Young

	Vector spaces and linear maps
	Vector spaces
	Linear maps

	Functions of several variables
	Multiple integrals
	Local extrema of real multivariate functions
	Constrained extrema

	Solutions

