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Abstract:  
While the risk factors of breast cancer have been extensively studied and recorded, the 
understanding of the microscopic and nanoscopic mechanisms causing the disease is 
not yet satisfactory. Recent research in cell biology points to sub-micron sized extracel-
lular vesicles (EVs) which are by now acknowledged to deliver cargo to cells and 
thereby mediate interaction between them. Investigation of EVs is challenging, as pres-
ently there are no golden standard methods for their isolation from bodily fluids or 
tissues, and their characterization. They are tiny (nano-sized) particles with dynamic 
identity that require development of new technologically advanced methods. This con-
tribution presents a brief survey of the evidences on various facts that are being col-
lected on breast cancer EVs.  
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1.  Etiology of breast cancer  

Breast cancer is the most often diagnosed and the most prevalent cancer of all types (Luo 
et al., 2022). Although there are reports on different risk factors, the etiology of cancer is 
not known. Incidence rate increases with age and saturates after about 55 years of age (Luo 
et al., 2022). It was found that lifestyle increases the risk for breast cancer incidence, e.g. 
smoking in premenopausal women (Peñalver-Argüeso et al., 2023), alcohol intake 
(McDonald et al., 2013), higher intake of sugar (Farvid et al., 2021) and red meat (Lo et al., 
2020). Some chemicals were connceted to higher incidence of breast cancer: polutants 
(White et al., 2023), food aditives (Sellem et al., 2024), heavy metals (Romaniuk et al., 2017), 
radiation (Preston et al., 2016), drug use disorder (Dahlman et al., 2021), psychological 
factors (Greer & Morris, 1975), lack of physical activity, and obesity (Hardefeldt et al., 
2018). Genetic factors play a significant role in many cases of breast cancer, particularly 
mutations in the BReast CAncer genes BRCA1 and BRCA2 which are associated with a 
high risk of developing the disease (Mehrgou et al., 2016). Additionally, various other 
genetic alterations contributing to breast cancer have been identified (Pal et al., 2024). The 
reported risk factors indicate the link of cancer incidence with hormonal status (Henderson 
& Feigelson, 2000). Hormonal factors, especially prolonged exposure to estrogen, are also 
crucial in the development of breast cancer (Al-Shami et al., 2023). Estrogens promote the 
growth of breast tissue, which may contribute to the development of cancerous cells, 
particularly in cases of hormonal imbalance or excessive estrogen production (Yaghjyan & 
Colditz, 2011). Early menarche (Harris et al., 2024; Lopes et al., 2024), late menopause 
(Lopes et al., 2024), and hormone replacement therapy (Vinogradova et al., 2020) are all 
risk factors that increase the likelihood of developing breast cancer. 

 

2.  Extracellular vesicles (EVs)  

Extracellular vesicles (EVs) are submicron membrane-bound structures released by all cell 
types into the extracellular space (Yanez-Mo et al., 2015). They are classified into subtypes 
based on their biogenesis and size, including exosomes, microvesicles (or ectosomes), and 
apoptotic bodies (Yanez Mo et al., 2015).  
EVs have emerged as essential mediators of intercellular communication, carrying diverse 
molecular cargo, including proteins, lipids, RNA, and DNA (Welsh et al., 2024). This cargo 
allows EVs to influence a variety of biological processes (Yanez Mo et al., 2015; Welsh et 
al., 2024). EVs are involved in various disease processes, particularly cancer. They are 
present in various biological fluids and hold great potential as biomarkers for early cancer 
detection, disease progression monitoring, and treatment response evaluation (Póvoa & 
Rodrigues, 2022; Bamanakar et al., 2023). Being crucial for cell-to-cell signaling, they 
influence tumor growth, metastasis, and immune responses, thus opening new 
possibilities for diagnosis and therapy (Chang et al., 2021). In breast cancer, EVs hold 
promise as non-invasive biomarkers detectable in blood and other body fluids for early 
diagnosis and monitoring (Xu et al., 2024). Ongoing research explores their use for 
therapeutic applications such as targeted drug delivery due to their ability to transport 
therapeutic agents directly to tumor cells.  
 
3.  Mechanisms of EV formation 
3.1. Endosomal Pathway (Exosome Formation) 
Exosomes, a subtype of EVs, are generated through the Endosomal Sorting Complexes 
Required for Transport (ESCRT) - dependent and -independent mechanisms (Teng & 
Fussenegger, 2020). Initially, the plasma membrane invaginates, forming early endosomes 
that mature into late endosomes, also known as multivesicular bodies (MVBs) (Yanez Mo 
et al., 2015). The inward budding of the endosomal membrane leads to the formation of 
intraluminal vesicles (ILVs) within MVBs. These ILVs eventually fuse with the plasma 
membrane, releasing exosomes into the extracellular space (Yanez Mo et al., 2015). The 
ESCRT machinery plays a critical role in sorting and packaging cargo into ILVs, while the 
tetraspanin family of proteins, such as CD63, also contribute to this process in an ESCRT-
independent manner (Teng & Fussenegger , 2020). 
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3.2. Budding from the Plasma Membrane (Microvesicle Formation) 
Microvesicles, also called ectosomes, are formed through direct outward budding of the 
plasma membrane (Kralj-Iglič et al., 2020). This process is driven by the reorganization of 
the actin cytoskeleton and the activation of specific lipid signaling pathways (Romer et al., 
2010). The local accumulation of phosphatidylserine (PS) on the inner leaflet of the 
membrane and the interaction with various membrane-binding proteins promote 
membrane curvature, leading to the formation and release of microvesicles (Record et al., 
2018). Unlike exosomes, microvesicles do not involve endosomal intermediates but are 
directly shed from the cell surface. 
 
3.3 Apoptotic Body Formation 
Apoptotic bodies are larger EVs formed during the programmed cell death (apoptosis) 
process (Yanez Mo et al., 2015, Kralj-Iglic et al., 2020). As cells undergo apoptosis, the 
plasma membrane begins to bleb, and fragments of the dying cell, including cytoplasm, 
organelles, and nuclear fragments, are packaged into apoptotic bodies. These larger 
vesicles are then released into the extracellular space, and they typically serve to eliminate 
cellular debris in an organized manner, facilitating immune system clearance (Boada - 
Romero et al., 2020). 
 
3.4 Regulatory Factors 
The mechanisms of EV formation are complex and involve multiple pathways that enable 
cells to release distinct types of vesicles into the extracellular space. Exosome formation 
through the endosomal pathway, microvesicle shedding from the plasma membrane, and 
apoptotic body formation during cell death are all critical processes in cellular 
communication. The formation and release of EVs are regulated by various factors, 
including cellular stress, environmental signals, and disease states. Key signaling 
pathways, such as those involving RABS (small GTPases), phosphoinositides, and 
tetraspanins, play critical roles in regulating vesicle biogenesis (Rädler et al., 2023). 
Additionally, cellular conditions like hypoxia, senescence, oncogene activation, oxidative 
stress (Chiaradia et al., 2021), inflammation (Ammirata et al., 2024) can influence the 
quantity and cargo of EVs, thereby modulating their functions in both physiological and 
pathological contexts. 
In contrast to exosomes, microvesicles form through a different process that involves direct 
outward of the plasma membrane (Kralj-Iglič et al., 2020). This pathway, often referred as 
ectosome formation, is driven by the rearrangement of the cytoskeleton, specifically actin 
filaments, and the activation of various lipid signaling pathways (Meldolesi, 2018). These 
processes induce membrane curvature, leading to the shedding of vesicles from the cell 
surface. Microvesicles are typically larger than exosomes, with diameters ranging from 100 
to 1000 nm. 
 
3.  Methods of EV isolation from bodily fluids  
Ultracentrifugation: This standard technique uses high-speed centrifugation to separate 
EVs based on their density. It is efficient but time-consuming and requires precise 
optimization of speed and duration. High centrifugal forces can also damage EVs, affecting 
their integrity and functionality (Božič et al., 2019). Size-Exclusion Chromatography (SEC): 
SEC separates EVs by size as they pass through a porous matrix, offering higher purity 
compared to ultracentrifugation, however, it is slower and may require optimization for 
specific sample types (Clos-Sansalvador et al., 2022). Density Gradient Centrifugation 
(DGC): DGC separates particles through a gradient of different densities, providing high 
purity, particularly in complex samples, however, it is complex, time-consuming, and 
requires careful handling (Clos-Sansalvador et al., 2022). Additional techniques like 
ultrafiltration, immunoaffinity capture (Welsh et al., 2024) and microfluidic analysis (Chen 
et al., 2024) are emerging for EV isolation from smaller samples.   

 

4.  Methods of EV isolation from tissues 

Isolating EVs from tissues is complex due to the challenge of extracting them from the 
extracellular matrix (Crescitelli et al., 2021). Successful isolation has been reported from 
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various tissues including adipose tissue (Sabio and Crewe, 2023), tumors (Swatler et al., 
2024), placenta (Zabel et al., 2020), and brain (Metamoros-Angles et al., 2024). In the central 
nervous system (CNS), EVs released by nerve cells play roles in both normal and 
pathological processes (Gassama et al., 2021). Protocols for isolating EVs from tissue 
interstitial fluids have been developed only recently (Guerrero-Alba et al., 2024). The 
MISEV2023 guidelines, updated by the International Society for Extracellular Vesicles 
(ISEV)(Welsh et al., 2024), offer standardized practices for isolating and characterizing EVs 
from solid tissues. These guidelines emphasize: Clarification of terminology to ensure 
consistent use of EV definitions; Experimental design to ensure reliable and reproducible 
results; Method flexibility, allowing researchers to select methods suitable for their 
research needs. EVs from tissues are typically separated based on biophysical properties 
like size, density, and surface composition (Welsh et al., 2024).   

 

5.  Methods of EV characterization  

Western blotting, Nanoparticle Tracking Analysis (NTA), and Electron Microscopy (EM) 
are commonly used to analyze EV composition, number density, and morphology, 
respectively (Welsh et al., 2024). Despite these challenges, EVs show promise for 
identifying new biomarkers that could enable early cancer detection (Póvoa & Rodrigues, 
2022; Möller & Salomon, 2023). Advanced technologies, such as mass spectrometry and 
sequencing, enable the identification of potential biomarkers and the improvement of 
diagnostic tools (Pocsfalvi et al., 2016). Advances in techniques such as nonlinear optical 
microscopy, which uses endogenous contrasts, have enhanced the ability to analyze EVs' 
biochemical and functional properties (Sorrells et al., 2024). Advanced deconvolution 
methods can be used to assess the EV transcriptome and compare expression profiles with 
different cell types (Larsen et al., 2024). Cancer cell-derived EVs carry molecules like 
messenger RNA and micro RNA, which affect signaling pathways and protein expression 
in target cells, supporting tumor growth and spread (Thery et al., 2018). However, 
quantifying EVs remains challenging, as many methods rely on indirect markers or 
particle counts, which may not always be specific to EVs (Atlantis Bioscience, 2024).  

 

6.  Types and treatments of breast cancer 

Carcinomas are tumors that start in the epithelial cells that line organs and tissues 
throughout the body. According to the type of cells in the breast that become cancer cells, 
we distinguish ductal carcinoma (originating in the milk ducts) and lobular carcinoma 
(originating in the glands in the breast that make milk). If the cancer remains in the duct, 
it is called ductal carcinoma in situ; if it expended in other breast tissue, it is called invasive 
or infiltrating breast cancer. Cancer cells carry estrogene (ER) and progesterone receptors 
(PR) and can be accordingly stimulated by the hormones (HR) (Orrantia-Borunda et al., 
2022). Some have increased quantities of the human epidermal growth factor receptor-2 
(HER2) protein which also stimulates growth of the cancer cells (Orrantia-Borunda et al., 
2022). The cancer cells are acquired from the tumor and tested for ER, PR and HER2 to be 
assigned positive or negative for the particular type. Recently, additional markers are 
considered such as different micro RNAs and gene mutants (Orrantia-Borunda et al., 
2022).  

Primary treatment of breast cancer is surgery combined with chemotherapy, targeted 
therapy and/or radiation therapy; in surgery, a part or entire breast is removed, usually 
together with nearby lymph nodes to test whether the cancer has spread (Trayes & 
Cokenakes, 2021). Chemotherapy includes oral or intravenous drugs to kill the cancer cells. 
Radiation therapy is used to shrink tumor before surgery and after surgery to kill the 
possibly remaining cancer cells. Targeted therapy includes endocrine therapy to diminish 
the amount of hormones that could stimulate the growth of the cancer cells. Antibody drug 
conjugates (ADCs) contain monoclonal antibodies and cytotoxic substances to deliver 
these drugs to the targets: cancer cells with specific surface antigens. In this way the 
treatment is more effective and the risk of systemic toxicity is lower than in conventional 
chemotherapy. This method is particularly promising for HER2-low and triple (ER, PR and 
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HER2) negative breast cancer which previously lacked effective treatments. (Mark et al., 
2023). 

 

7.  Effect of radiation on EVs of cancer cells and radiation induced bystander effect 

About half of the cancer treatments involve radiotherapy (Huber st al., 2024). At the cellular 
level radiotherapy should cause DNA destruction in cancer cells (Jassi et al., 2024) by 
inducing changes in DNA repair and causing cell cycle arrest and apoptosis. As key 
mediators of cell communication, also EVs play an important role in these processes 
(Szatmári et al., 2019). EVs are selectively targeting cells and can modulate the effects of 
radiation (Ripoll-Viladomiu et al., 2024), promote immune and inflammatory responses 
(Huang et al., 2018) and transmit microRNAs (e.g. miR-603) to influence the response of 
cancer cells in glioblastomas (Ramakrishnan et al., 2020). Radiotherapy affects not only 
cancer cells but also surrounding normal tissue. The radiation-induced bystander effect 
describes the changes in non-irradiated cells induced by the signals from irradiated cells. 
Communication between the irradiated and non-irradiated cells via radiation-influenced 
EVs creates indirect radiation exposure which affects adaptation to radiation (Jassi et al., 
2024).  
 

8.  Clinical studies on EVs in breast cancer diagnostics 

Recent studies have focused on the lipid composition of plasma-derived EVs as diagnostic 
biomarkers for breast cancer. Using mass spectrometry-based lipidomics, researchers 
identified significant alterations in lipid classes, including phosphatidylcholines and 
sphingomyelins, in EVs from breast cancer patients compared to healthy controls. These 
distinct lipid profiles demonstrated high accuracy in differentiating cancer patients from 
non-cancer individuals, highlighting their potential as a non-invasive diagnostic tool for 
early detection and disease stratification (Nishida-Aoki et al., 2020). There are various 
molecular mechanisms by which EVs promote brain metastasis in breast cancer (Sakamoto 
et al., 2023): EVs deliver bioactive molecules, such as microRNAs and proteins, to recipient 
cells, thereby regulating signal transduction and protein expression levels; EVs from brain 
metastatic breast cancer cells disrupt the blood-brain barrier by altering tight junctions 
between endothelial cells and promoting tumor cell infiltration into the brain parenchyma; 
EVs influence astrocyte function, contributing to the establishment of a pre-metastatic 
niche that supports tumor growth (Sakamoto et al., 2023). Mizenko et al. (2024) analyzed 
471 clinical trials performed from 2000 to 2022 to evaluate the status and challenges of EV-
based diagnostics and therapies. They found that 70% of trials focus on diagnostics, with 
cancer (breast and lung) as the primary targets, while 18% explore therapeutic 
applications, particularly those using mesenchymal stromal cell-derived EVs for 
inflammatory, respiratory, and neurological disorders. Ultracentrifugation was the most 
common EV isolation method (31%), and RNA sequencing was the leading 
characterization tool (36%). However, only 36% of trials fully reported EV 
isolation/characterization protocols. Most trials were conducted in North America (42%) 
and Asia (36%), underscoring regional research dominance (Mizenko et al., 2024). The 
authors emphasize the need for standardized methodologies to address EV heterogeneity 
and enhance clinical translation. Zhang et al. (2023) assessed EVs in 80 patients with 
varying stages of the disease. The study demonstrated that the presence of specific EV 
markers correlated with tumor progression, offering a non-invasive approach for real-time 
monitoring (Zhang et al., 2023). Challenges such as standardizing isolation and 
characterization methods remain, with future research aiming to address these limitations 
to facilitate clinical translation.   

 

9.  Predictive value of EVs 
Effects of EVs in cancer include angiogenesis, epithelial–mesenchymal transition, 
extracellular matrix remodelling, and immune escape (Tao and Guo, 2020). The predictive 
value of EVs lies in their ability to reflect real-time changes in the tumor microenvironment 
(Xu et al., 2024). Tumor-derived EVs contain a variety of biomolecules, including proteins, 
lipids, and nucleic acids, which reflect the molecular characteristics of the tumor, 



Proceedings of 12th Socratic Lectures 2025    

 

 36 of 131 

 

providing valuable insights into disease progression and therapeutic response (Zhang et 
al., 2023; Xu et al., 2024). EVs are suggested to play crucial roles in intercellular 
communication, promoting tumor growth, metastasis, and drug resistance 
(Schwarzenbach & Gahan, 2020). They offer several advantages over traditional 
biomarkers, including their ability to capture tumor heterogeneity and their potential to 
track both primary tumors and metastatic sites (Lee et al., 2023; Vinik et al., 2020). The 
protein content of EVs can serve as a tool for monitoring therapeutic response and 
detecting early relapse in metastatic breast cancer (Tian et al., 2021; Zhou et al., 2021). 
Studies have identified specific EV proteins that correlate with breast cancer progression, 
recurrence, and drug resistance, suggesting their potential for personalized treatment 
strategies (Serretiello et al., 2024; Tian et al., 2021). Recent advancements in proteomics and 
advanced analytical techniques, such as mass spectrometry, have enabled the 
identification of tumor-specific EV biomarkers, offering further insights into the molecular 
underpinnings of breast cancer (Bandu et al., 2024; Muttiah et al., 2024). The integration of 
EV analysis with other biomarkers, including circulating tumor DNA and small RNAs, 
enhances the sensitivity and specificity of early detection and monitoring of therapeutic 
efficacy (Koi et al., 2020; Rayamajhi et al., 2024). 

 

10.  Conclusions 

EVs hold substantial promise as non-invasive biomarkers for breast cancer diagnosis, 
metastasis monitoring, and treatment response prediction. Their role in tumor biology, 
combined with advances in detection technologies, makes them a valuable tool for 
precision oncology and personalized cancer therapy. The potential use of EVs as delivery 
vehicles for targeted therapies opens new avenues for breast cancer treatment, with 
ongoing research exploring their role in immuno-oncology and drug delivery (Asleh et al., 
2023; Wang et al., 2021).  
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