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Abstract: 
This study explores the Imry-Ma theorem and the Kibble-Zurek mechanism in the con-
text of quenched confined nematic liquid crystals (NLCs). The Imry-Ma theorem ex-
plains domain formation under the influence of random fields, while the Kibble-Zurek 
mechanism describes defect dynamics during fast enough symmetry breaking phase 
transitions. We demonstrate that considering both mechanisms one could explain the 
equilibrium domain structure observed in NLCs confined within a plane-parallel cell. 
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1. Introduction

1.1.  Context and importance

The interplay between theoretical frameworks and experimental observations is essential 
for understanding complex systems like nematic liquid crystals. Liquid crystals (LC) , with 
their unique combination of fluidity and ordered molecular alignment, are sensitive to im-
purities and external influences, making them an excellent platform for exploring the ef-
fects of disorder on structural properties and phase transitions (Kléman et al., 2003). For 
simplicity we limit to thermotropic rod-like LC molecules whose local orientational order 
is at the mesoscopic scale described by the nematic director field �⃗�  which points along the 
average orientation. Here the states ±�⃗�  are physically equivalent. In thermotropic LCs 
phase behavior is controlled by varying temperature. At relatively high temperatures LC 
display liquid-like order, forming the so-called isotropic (I) phase. Thermotyropic nematic 
liquid crystal (NLC) phase represents the simplest LC phase which can be reached starting 
from the isotropic phase by lowering temperature. The equilibrium nematic (N) phase ex-
hibits long range orientational order in which �⃗�  is homogeneously aligned alog a single 
symmetry breaking direction.  

Of our interest is recent experimental study (Pišljar et al., 2024) in which domain-type is 
observed in NLC confined with a plane-parallel cell of thickness h, where the confining 
substrates enforce the so-called isotropic tangential anchoring. In the latter case nearby LC 
molecules prefer to lie within the confining plate where all directions are equivalent. How-
ever, the experimental study shows that in equilibrium a domain-type nematic structure 
exists, where the characteristic domain size 𝜉𝑑 ∝ ℎ.  

Below we demonstrate that such behavior could be explained using universal Imry-Ma 
(Imry & Ma, 1975) and Kibble-Zurek (Kibble, 1976; Zurek, 1985) mechanism which are 
valid for phases which are reached via a continuous-symmetry breaking phase transition 
(Sethna, 1992).  

1.2. Theoretical background 
The Imry-Ma (IM) theorem, first introduced in the context of magnetism, provides a foun-
dational framework for studying the impact of disorder on long-range order which is 
reached via a continuous symmetry breaking phase transition. It predicts that random 
fields can destabilize order in systems described by continuous symmetry breaking phase 
transitions, leading to the formation of domains whose sizes depend on the strength of the 
disorder (Imry & Ma, 1975). Initially formulated for ferromagnets, the theorem has since 
been adapted to other systems, including liquid crystals (Ranjkesh et al., 2014). Further-
more, if a continuous symmetry breaking phase transition is fast enough it could tempo-
rarily exhibit domain-like structure due to the finite speed of information propagation. The 
resulting size of initially formed domains is determined by the Kibble-Zurek (KZ) mecha-
nism (Zurek, 1985) which was originally derived in cosmology (Kibble, 1976).   

1.3. Application to liquid crystals 
In confined nematic liquid crystals, domains could be temporarily formed in a fast enough 
(Zurek, 1985) I-N phase transition. Namely, in such cases in distant parts of LC symmetry 
is in general broken in different directions because of finite information velocity propaga-
tion (Kibble, 1976). In bulk NLC domains grow with time and terminate in a single domain 
which exhibits the lowest parallel cell of thickness h, whose non-treated confining plates 
do not favor any in-plane direction. We claim that a domain pattern, formed slightly after 
the nematic phase was reached, could be imprinted into confining plates due to the 
memory effects (Kléman et al., 2003; Kralj & Sluckin, 1994). Namely, it is well known that 
LC molecules nearby a confining plate could be »frozen-in« orientationally if LC-substrate 
interaction is stronger that LC-LC configuration. In the following we show that the combi-
nation of IM argument and KZ mechanism could qualitatively explain recent experimental 
observations (Pišljar et al., 2024).   



Proceedings of 12th Socratic Lectures 2025 

104 of 260 
2. Material and Methods

2.1.  Theoretical framework for Imry-Ma theorem 
The Imry-Ma theorem explains the emergence of domain structures in systems experienc-
ing continuous symmetry breaking, particularly in the presence of random fields(Imry & 
Ma, 1975).  The elastic energy term, which enforces homogeneity, plays a critical role in 
this process. The key term enforcing homogeneity in field-type theories is approximated 
by a single elastic modulus, given by (Kléman et al., 2003) 

𝑓𝑒 ∼
𝐾

2
|𝛻�⃗� |2  , (1) 

where 𝐾 is the nematic elastic constant and ∇�⃗�  represents the spatial gradient of the di-
rector field �⃗� . This energy term drives the system toward minimizing distortions and 
maintaining uniform alignment. When geometrical constraints are enforced, elastic energy 
becomes sensitive to characteristic distances within the system, such as the domain size 
𝜉𝑑. It roughly holds 

𝑓𝑒 ∼
𝐾

2
(
1

𝜉𝑑

)
2

. (2) 

Equation (2) highlights how smaller domains increase elastic energy, favoring larger do-
mains in the absence of competing forces. 

2.2.  Influence of random fields 
Random fields disrupt the uniform alignment enforced by the elastic term. In our illustra-
tion we present a random-type disorder by spatially randomly varying local random field 
direction �⃗� . This local field enforces a preferred local alignment on the director field �⃗� . In 
NLCs the energy contribution from the random field could express as (Bradač et al., 2011) 

𝑓𝑖 ∼ −𝑊𝑆𝑃2 (�⃗� . �⃗� ) , (3) 

here, 𝑊 is the random field strength, 𝑆 represents the degree of molecular order, and the 
second Legendre polynomial 𝑃2(𝑥) = (3𝑥2 − 1)/2 is dependent on the alignment be-
tween �⃗�  and �⃗� . The random field leads to the formation of domains, as it introduces lo-
calized disruptions to the system. In the continuation we assume that W is spatially con-
stant and orientations of unit vectors �⃗�  are randomly distributed.  

The balance between elastic energy (𝑓𝑒) and random field energy (𝑓𝑖) determines the char-
acteristic domain size. The resulting domain size 𝜉𝑑 is given by (Ranjkesh et al., 2014)  

𝜉𝑑 ∼
1

𝑊
2

4−𝑑

, (4) 

where 𝑑 is the dimensionality of the system. This equation shows that stronger random 
fields lead to smaller domains, while larger elastic constants promote larger domain sizes 
what is illustrated in Figure 1. 
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Figure 1. Dependence of domain size 𝜉𝑑 on the strength of a random field 𝑊 in d=3 systems. The graph illustrates how 

an increasing random field strength impacts the characteristic domain size. 

2.3.  Kibble-Zurek mechanism 
The Kibble-Zurek mechanism provides a framework for understanding how defects form 
during continuous phase transitions. As the system is cooled through its critical tempera-
ture 𝑇𝑐, the relaxation time 𝜏 and coherence length 𝜉 diverge. These quantities are close 
to 𝑇𝑐 expressed as (Zurek, 1985) 

𝜏 = 𝜏0|𝑟|
−𝜂   , (5) 

𝜉 = 𝜉0|𝑟|
−𝜈  , (6) 

where 𝑟 = (𝑇 − 𝑇𝑐)/𝑇𝑐, 𝜂 and 𝜈 are critical exponents and 𝜏0, 𝜉0 are values of 𝜏 and 𝜉0 
deep below the phase transition. In NLCs it roughly holds 𝜂 = 1 and 𝑣=1/2 (Bradač et al., 
2011) what we consider in the continuation. In the classical KZ approach one assumes that 
the quench is realized linearly in time, i.e. 𝑟 = −𝑡/𝜏𝑄 , where 𝜏𝑄  is the characteristic 
quench time. At the freeze – out time 𝑡𝑧, the system transitions from an adiabatic to a non– 
adiabatic regime as shown in Figure 2a. It is defined by (Zurek, 1985) 

𝑡𝑧 ∼ 𝜏0|𝑟𝑧|
−1 (7) 

and the corresponding coherence length at freeze-out is: 

𝜉𝑧 ∼ 𝜉0|𝑟𝑧|
−

1
2  . (8) 

One assumes that the maximal cluster size formed by fluctuations is frozen-in at the time 
|𝑡𝑧| above 𝑇𝑐 and remains frozen-in till the time −|𝑡𝑧| below 𝑇𝑐. The largest frozen-in do-
mains, given by 𝜉𝑧 , in this modelling then represent the so-called protodomains, which, be-
low 𝑇𝑐, nucleate individual domains whose orientational distribution is randomly distrib-
uted. From description above it follows (Bradač et al., 2011; Zurek, 1985) that the charac-
teristic size of protodomains 𝜉𝑝~𝜉𝑧 exhibits the following scaling law in NLCs: 

𝜉𝑝 ∼ 𝜉0(𝜏𝑄/𝜏0)
1/4

. (9) 

Faster cooling rates result in higher defect densities, while slower rates allow the system 
to form fewer defects. It roughly holds that the defect density when the protodomains are 
formed scales as 𝑛 ∝ 1/√𝜏𝑄 on varying  𝜏𝑄 , see Figure 2b. 
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Figure 2. a: Dynamics of the system as a function of temperature. The blue color shows the change in the relaxation 
time (𝜏) as a function of the change in temperature. The green color shows how the system temperature changes 
over time (𝑡). The dashed line shows the part where the system goes through the freeze-out process, b: Defect 
density 𝑛 at the time when protodomains are formed as a function of the characteristic quench time 𝜏𝑄. 

3. Results

In the following we apply the KZ and IM approaches to explain experimental observation 
reported in (Pišljar et al., 2024) with respect to typical domain length 𝜉𝑑 as a function of 
the confining cell thickness h. 

We describe the essential free energy contributions of the confined NLC as 

𝐹 = ∫
𝐾

2
|𝛻�⃗� |2𝑑𝑉 −∫𝑊𝑆𝑃2 (�⃗� . �⃗� ) 𝑑𝐴. (10) 

In the first term the integration is performed over the LC body. In the 2nd term we consider 
conditions at the confining boundaries. We assume that the conditions at both substrates 
are identical and that they do not enforce any preferred direction within the confining 
plates in the isotropic phase. Therefore, this term begins to contribute in the nematic phase 
where it enforces a locally preferred direction due to the reasons explained below. 

We assume that the system is quenched into the nematic phase with the characteristic 
quench rate 𝜏𝑄 .  Consequently, a domain-type structure is formed where the initial size 
of domains is estimated by 𝜉𝑝 given by Eq.(9). Next, we assume that the pattern of LC 
molecules at the confining plates becomes frozen-in due to stronger LC-substrate interac-
tions with respect to LC-LC coupling. Note that this phenomenon is not possible in the 
isotropic phase because the thermal fluctuations are two strong. After the pattern is im-
printed at the substrates it remains relative stable which is supported by several observa-
tions (Kralj & Sluckin, 1994). Therefore, soon after the quench a domain-type pattern, 
which depends on 𝜏𝑄 , is frozen-in at the confining substrates which effectively acts as a 
local random-field. In Eq.(10) we approximate this randomness by randomly distributed 
values of surface imposed unit vectors �⃗� . Note that the average separation between two 
neighboring sites enforcing different orientations is given by 𝜉𝑝. 

Our goal is to obtain an estimate on the characteristic size 𝜉𝑑 of stable domains where they 
reflect the compromise between the elastic and random-field penalties. For this purpose 
we use similar approaches used in standard IM approach and apply it to our system. 
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 With this in mind the average elastic penalty 𝐹𝑒 reads 

𝐹𝑒~𝐾/(2𝜉𝑑
2)𝐴ℎ (11) 

where A stands for the confining substrate area. On the other hand the average surface 
interaction penalty 𝐹𝑖 of the systems reads 

𝐹𝑖~ − 𝑊𝑆 < 𝑃2 > 𝐴, (12) 

where <....> determines the average. Using the standard IM approach we assume that 
< 𝑃2 > depends on the domain size and that it is averaged out in very large domains. In 
finite domains it holds < 𝑃2 > ~1/√𝑁, wher N stands for the number of random sites 
within each domain. It roughly holds  𝑁~(𝜉𝑑/𝜉𝑝)

2 since the confining plates are two di-
mensional. Taking this into account one obtains from the »compromise« condition 𝐹𝑖~𝐹𝑒 
an estimate for a stable domain size: 

𝜉𝑑~ℎ
𝑑𝑒

𝜉𝑝

, (13) 

where 𝑑𝑒 = 𝐾/𝑊 is commonly referred to as the surface coherence length. 

4. Discussion

Our simple derivation suggests that stable domain pattern could be observed in confined 
LCs where the imposed disorder is enabled by memory effects. Because disorder is in such 
a case enforced only by the confining plan-parallel surfaces the resulting domain size 
should linearly depend on the cell thickness. Note that this observation could be experi-
mentally tested by changing the quench rate of the I-N phase transition. Our derivation 
suggests that 𝜉𝑑 ∝

1

𝜉𝑝
∝ 1/√𝜏𝑄.

5. Conclusions

Our study illustrates how knowledge in different branches of science could be transferred 
between disciplines. This transfer is possible even in strongly physically different systems 
if mathematical description is similar. In our study this transfer was possible because the 
unifying element was continuous symmetry breaking phase transition. In it we crossed 
from a phase exhibiting isotropic symmetry to a phase where the symmetry was broken 
along a single symmetry direction.   
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