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Abstract: 
In the present study we analyse different patterns commonly encountered in nature. 
Firstly, we review patterns that display the hexagonal symmetry and triply periodic min-
imal surfaces. We analyse hexagonal honeycomb configurations and analyse advantages 
of such an architecture. Next, we use a simple Landau-type order parameter field model 
to illustrate how diverse patterns could be generated via the symmetry breaking mecha-
nism.  
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Abstract: 
We study bulk and surface phase transitions in confined nematic liquid crystals exhibit-
ing 1st order isotropic-nematic phase transition in bulk systems. We demonstrate analyt-
ically that confinement could in general quantitatively and even qualitatively modify 
phase behavior. Furthermore, we show that confining substrates could enable surface 
phase transitions. Studied phase behaviors could be applied also to other condensed mat-
ter systems displaying 1st order continuous symmetry order-disorder phase transition if 
the relevant order parameter amplitude is linearly coupled to a local surface ordering 
field. 
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1. Introduction

Our surrounding world displays an enormous complexity and an infinity of diverse pat-
terns. One would expect that it is difficult to describe key mechanisms enabling such di-
versity. However, it seems that the basic principles of matter originate in symmetry and 
symmetry breaking (Kibble, 1976; Sethna, 1992; Zurek, 1985). For example, the standard 
model of particles is based on symmetry breaking of local quantum fields and it seems that 
conserved quantities in nature could be explained by taking into account relevant systems’ 
symmetry properties (Kibble, 1976; Sethna, 1992; Zurek, 1985).  

Different materials forming solid and soft materials (Kleman et al., 2003) in our world can 
be viewed as being built using only three different “building blocks”, i.e., electrons, pro-
tons and neutrons. These are combined in atoms following quantum mechanical rules and 
furthermore, atoms could assemble in further higher-hierarchical configurations. Further-
more, it seems that key natural behaviors could be explained using geometrical concepts 
(Imry and Ma, 1975; Kibble et al., 1976; Sethna, 1992; Zurek, 1985). 

In the following we present some i) systems exhibiting hexagonal symmetry or ii) systems, 
that are making use of the minimal surface principle to illustrate how structures are related 
to different emerging functionalities. 

1.1. Hexagonal lattices 

We first focus on hexagonal lattices which are ubiquitously realised in nature. The typical 
lattice consists of hexagons as shown in Figure 1. One see that blue and yellow coloured 
elements, which form the lattice, are not connected the same way. Blue atoms have a neigh-
bour horizontally to the right and two more diagonally to the left. The situation is inversed 
for the yellow ones. This lattice can be described in terms of three base vectors ai, via which 
each lattice point could be located. Hexagons are also one of three shapes that can cover a 
2D plane just by themselves, the other two being triangles and squares. But hexagonal 
tiling is the closest packing way to arrange circles in two dimensions (the best way to di-
vide a surface into regions of equal area with the least total perimeter) which was proven 
by Thomas C. Hales (Hales, 2001).  

Figure 1: Hexagonal lattice in 2D in which we show the unit cell and the corresponding base vectors. 



Proceedings of 12th Socratic Lectures 2025 

129 of 260
Hexagonal lattices are widely used in various applications. One example are hexagonally 
shaped fence from galvanized steel, also known as the chicken mesh. Furthermore, 
Mebrahtom et al. (2024) compared the chicken mesh with welded square mesh and ex-
panded metal mesh in tests, where they added mentioned meshes to concrete beams. They 
tested their energy absorption (free fall), compressive strength (capacity of a material to 
withstand loads that try to reduce its size) and flexural strength (the ability of a material 
to withstand bending under the application of external force). The chicken mesh outper-
formed the other two in all the tests. A single layer increased the flexural strength of a 
beam by 8 times (compared to 6 and two times for other two), reduced the compressive 
strength by less than 1% (better than over 1% for welded mesh and 8% reduction for ex-
panded mesh), while it could absorb 255 J of energy from free fall (compared to 198 J and 
188 J for other two). That in combination with its cheap price makes it a great contender 
for reinforcing concrete beams. 

Furthermore Carbon, which is the base of life on Earth, is often found forming hexagonal 
lattices in forms like graphite, graphene or nanotubes. Latter two forms have high ultimate 
tensile strength, up to 130,000 MPa for graphene (Lee et al., 2008) and (theoretically) up to 
300,000 MPa for nanotubes (Yu et al., 2000). For comparison, different forms of steel can be 
found to have around 2,000 MPa. Graphite on the other hand is thought to be one of the 
first crystals to ever condense, possibly only behind diamond (Hazen et al., 2013). Graphite 
could be transformed into diamond only under pressure of a few GPa, depending on the 
temperature (1 GPa = 10,000 bar). At 5000 K and 12 GPa a triple point of carbon was found 
(where carbon is present in liquid, diamond and graphite form)(Bundy et al., 1994). One 
layer of graphite yields graphene, the miracle material. This is partly due to the fact that 
for decades, it was believed that 2D materials were non-existent in nature (Ding et al. 2019). 
Part of the problem is that the bending stiffness (the resistance of a member against bend-
ing deflection/deformation) based on continuum mechanics theory is proportional to the 
cubic power of the thickness. Therefore it should be negligible for 2D materials. But the 
discovery of graphene in 2004 changed the narrative. Ding et al. (2019) found that when it 
comes to 2D lattices, hexagonal is superior to triangular and square. This is because, in 
contrast to the other two, the hexagonal lattice experiences variation of the bond angles 
during bending, providing finite bending stiffness and thus great stability. With their 
model they also found that repulsive moment of atoms arranged in a hexagonal lattice 
increases the structural stability of the lattice. The same cannot be said for triangular and 
square lattices, as their attractive inner moment renders them unstable, which was shown 
by using the same model. 

Back to graphene, it is said to conduct electricity better than any other material known to 
science, and is known for its material strength. Its heat conductivity was also believed to 
be beyond any other material, however Han and Ruan found that this is not the case (Han 
and Ruan, 2023). Many papers put the thermal conductivity of graphene between 3,000 
and 5,000 W/mK, but Ruan’s team measured it to be around 1,300 W/mK, which falls short 
of diamond (2,000 W/mK). This figures are all huge, as thermal conductivity of iron for 
example is around 80 W/mK at room temperature. But graphene is still the front runner 
for superconductivity of electricity. Superconductivity is the phenomenon when the elec-
trical resistance of the material drops to zero and magnetic fields are expelled from it. This 
only happens once the temperature of the material drops under the critical temperature. 
One way to make graphene into a superconductor is to take two sheets of the magical 
material and twist them for the “magic angle”. At the temperature of under 1,7 K under 
an angle of roughly 1.05° the material becomes superconducting. The term magic angle 
was suggested in 2011 (Bistritzer and MacDonald, 2011), although it wasn’t known back 
then it would lead to superconductivity, rather it was known that band structures appear 
in which electrons are in a way isolated from each other. More options for superconduc-
tivity are made with more layers of graphene. With three layers, twisted by 1.5° relative to 
each other, the material becomes superconductive at roughly 2.5 K. The mechanism behind 
this exact observation remains unknown (Garisto, 2023). 
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Figure 2: Two graphene lattices, twisted by 1.05°. 

Finally, that same lattice that makes concrete stronger and graphene into a miracle mate-
rial, is also used by animals such as bees. They build cylindrical cells that later transform 
into hexagonal prisms, achieving a maximal surface/perimeter ratio, through a process that 
it is still debated, even though the honeycomb has been a subject of thought since the an-
tiquity, when it caught the eye of the Roman philosopher Marcus Terentius Varro. It could 
be explained partially by action of physical forces, as well as behaviour of bees, as they use 
their legs to measure distances (Nazzi, 2016). They also use their bodies to keep the tem-
perature of the wax at around 35 °C, which is a bit below the temperature where wax exists 
in a liquid-solid equilibrium at 40 °C, which still allows bees to modify wax in hexagonal 
patterns, suggesting that behaviour of bees could be the answer (Bauer and Bienefeld, 
2012). Further articles (Nazzi, 2016) talk about a similar idea of bees themselves creating 
hexagonal pattern. The bees were shown to mostly start constructing a new cell from the 
groove formed by the two previous cells. However, bees also build honeycombs starting 
from many different points, and this is where constructing a perfect hexagonal lattice be-
comes impossible (Smith et al., 2021). But they have evolved to change their behaviour in 
order to sew parts of the honeycomb together with pentagons and heptagons. They can 
also tilt individual hexagons in order to fill out the pattern. Keep in mind that the bees 
have limited global awareness and make decisions based on local information. And they 
still get it right, so we can conclude that bees are some of the most skilled architects out 
there.  

1.2. Triply periodic minimal surfaces 

Triply periodic minimal surfaces or TPMS are structures with two main defining features. 
The first is their minimal surface trait. In topology, for a surface to be deemed minimal, it 
has to satisfy a simple requirement: the mean curvature at each point on the surface is zero. 
In other words, they are equally convex and concave at all points or saddle-like or hyper-
bolic in shape. The name comes from the fact that, given a fixed boundary, their surface is 
the smallest compared to other surfaces constructed under the same boundary conditions. 
The second feature is the triply periodicity. This means that the structure has three base 
vectors and thus repeats periodically in 3 directions or is in other words a three-dimen-
sional structure. Most TPMS are non-intersecting and divide space into separate volumes. 
These volumes can be tailored to be different in size in relation to each other. In our cases 
there will only be two of these volumes. 
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There are many different types of TPMS with new ones still being investigated or just the-
orized. The main types of TPMS structures are the primitive (P), diamond (D) and gyroid 
(G) types. They can be depicted in multiple ways. The simplest is in the form of a skeletal
structure. The skeletal structures represent the volumes that are separated by the surfaces.
These lattices are the same in our cases, with them being rotated and intertwined. The
primitive TPMS has a simple cubic skeletal structure that represents one of the volumes in
red and another simple cubic structure that represents the other volume in blue as seen in
Figure 3.

Figure 3: Examples of TPMS: a) primitive TPMS with lattices as depiction of volumes; b) diamond TPMS; c) gyroid TPMS. 

In the following we list some of peculiar features enables by TPMS structures. There are 
two ways of creating a coloured surface. The first is with the use of dyes. These work by 
simply absorbing or reflecting certain parts of the spectrum of visible light, due to their 
chemical make-up. The second are structural colours. These are produced due to the way 
material is shaped. These structures use physical phenomena such as interference or dif-
fraction to selectively reflect different wavelengths of light at different intensities. In the 
case of TPMS the phenomenon that we see happen is mainly Bragg scattering. Bragg scat-
tering is a phenomenon that was first observed in atomic lattices. The interaction between 
the atoms and the waves, when they enter a crystal, can be modelled by creating parallel 
planes at a distance d from one another off which light would bounce. If the wavelength 
of light and angle of the incident waves is just right the constructive interference occurs. 
Otherwise, we get destructive interference or there is no change in intensity. This means 
that a peak of intensity of certain wavelengths of light is created. The peak is what we 
primarily then interpret as the colour of the object. The colour of parts of the wing or even 
the whole wing can change as we view it from different directions, because of the angle 
dependence of the incoming and thus reflected light. We also see a metal-like shine due to 
the method of colouring, that is not common in dyes. 

The coloured part of butterfly wings are really scales, that are attached to the main body 
of the wing. Butterflies use many different techniques to attain the colours of these wings. 
In some cases, they use simple dyes and in others they use different types of structural 
colouring methods. What we do see is that in the latter cases, traditional dyes like melanin 
are also in some cases used as a base. These dyes cause the structural mechanisms to work 
better, as they also help to absorb light. 
Firstly, to determine what method of colouring is used. Saranthan et al. used a method of 
imaging called small angle X-ray scattering or SAXS to take measurements of the 
nanostructure of certain species of butterfly wings, which were previously thought to have 
TPMS structures, to determine which type of structure they use. They found that the five 
species they imaged all used the gyroid structure. The structure is comprised of chitin and 
air. They also then, using this information, predicted what the reflective spectra of the but-
terfly wing scales would be. They found that the real and simulated spectra both match up 
well (Saranathan, 2010).  
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Beetles also use TPMS structures, that are created in the form of dots on their carapace, to 
display colours. Galusha (2008) investigated the scales of the weevil Lamprocyphus au-
gustus using high-resolution imaging techniques and simulations to determine that these 
weevils use a diamond TPMS structure as their colouring method. They also found that 
these structures have a sort of grainy composition to them. The structure is not perfect like 
we would expect to see in a crystal but shows domains of periodicity. They also found that 
it is thanks to these non-uniform assemblies that the beetles have a near angle-independent 
coloration, which means that you can see these colours from any angle (Galusha, 2008). 
TPMS is encountered also in the mitochondria of amoeba (Chaos carolinensis). The cell is 
commonly known as a sort of ball of living material floating around in an environment. 
The only thing dividing these two environments is the membrane on the outside of the 
cell. And just as we have smaller masses called organs inside of us that have their own 
specific function and are separated from the rest of the body by different layers, so does 
the cell too have its own organelle. These have their own outer and inner layers. These 
layers have recently in some cases been found to be cubic membrane structures which are 
analogous to TPMS. Examples from the work of Landh included the smooth endoplasmic 
reticulum, mitochondrial inner membrane and chloroplast thylakoid membranes (Landh, 
1995). Deng et al. have used transmission electron microscopy and simulations of TPMS 
structures to find the structure used in the cells of the giant amoeba Chaos carolinensis 
(Deng et al., 2017). They found that the structure best aligns with a double diamond struc-
ture, which is a more complex variant of the normal diamond structure. The exact reasons 
for these structures are still not fully known although a few theories and advantages have 
been found. One theory, as proposed by Deng et al. is that because these amoebae do not 
have a way of going into a dormancy state, the mitochondria constantly must produce 
energy (Deng et al., 2017). The most common source of this energy during starvation are 
the membranes of the mitochondria. Because the mitochondria still need to uphold a cer-
tain surface to volume ratio while their membrane is being consumed, they take the form 
of a very efficient structure (Deng et al., 2017). 
Deng et al. have also found another possible use of these structures in mitochondria. They 
tested the oxidative damage that was dealt to RNA in the presence of two different mito-
chondria structures. They used the mitochondria of a 7-day starved amoeba and those 
from a mouse liver, which do not have TPMS structures. As another control, they tried 
comparing the effects from the mitochondria of starved and non-starved amoeba. The 
RNA with the cubic structure mitochondria had accumulated less damage than the RNA 
in the other two cases. Thus we can assume there to be another reason for mitochondria to 
take the cubic membrane structure (Deng et al., 2017). 
In this contribution we present two different illustrations of geometrically driven phenom-
ena. Firstly, we consider hexagonal patterns engineered by bees and analyze resulting ben-
eficiaries. Next, we present a simple minimal model which explains how symmetry break-
ing could generate attractive or repulsive interactions among “objects”. We demonstrate 
that infinity of different configurations could emerge although equilibrium configurations 
of such unperturbed systems are expected to be featureless.   

3. Methods

We use a simple Landau-type approach in which phase and structural behaviors are 
described in terms of order parameter field (Kleman et al., 2003; Sethna, 1992). We consider 
a 3D system exhibiting a continuous symmetry breaking phase transition on varying a 
relevant driving parameter (temperature in our case). We assume that a long-range axial 
orientational order is formed in the symmetry broken phase, which is spatially 
homogeneous in bulk (i.e., large enough unperturbed system where boundary conditions 
could be neglected) equilibrium. Hence, we focus on a system which exhibits isotropic 
symmetry (i.e., it does not possess any kind of order) in the higher temperature phase and 
below the critical temperature 𝑇𝑐 displays a long-range orientational order. The latter is 
in bulk equilibrium spatially homogeneous along an arbitrary symmetry breaking 
direction.  
For example, such a phase transition could be realized in thermotropic nematic liquid 
crystals (Kleman et al., 2003) (NLCs) which we use as an illustrating “toy model”. Namely, 
the theory of NLCs is relatively well developed (Kleman et al., 2003) and phenomena 
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analyzed in this contribution could be experimentally observed. For simplicity we consider 
LCs formed by anisotropic rod-like molecules, whose local order could be presented by an 
axial field, whose orientation is commonly referred to as the nematic director field �̂�. The 
states ±�̂� are physically equivalent to mimic the axial symmetry. In thermotropic NLCs 
the orientational describing local uniaxial order is given by the symmetric and traceless 
tensor order parameter which can be expressed in terms of �̂� as 

𝑄 = 𝑆 (�̂�⨂�̂� −
𝐼

3
) (1) 

The additional quantity in Eq.(1) is the scalar nematic order parameter S which describes 
the degree of orientational order. In the isotropic phase, which exhibits isotropic symmetry 
and is stable above the critical temperature 𝑇𝑐, the nematic order is absent and S=0. In the 
uniaxial nematic phase, which is stable below 𝑇𝑐 , S>0 and in bulk equilibrium the tensor 
order parameter is spatially homogeneous.  
For general conditions the order parameter field spatial configuration minimizes the free 
energy F which we express as  

𝐹 = ∭(𝑓𝑐 + 𝑓𝑒)𝑑𝑣 + ∑ ∬ 𝑓𝑖
(𝑗)

𝑑𝑎𝑗 . (2) 

The first integral in Eq.(2) is carried out over the LC body, where dv stands for the volume 
element, 𝑓𝑐 is the condensation and 𝑓𝑒  elastic free energy density. The second integral 
sums contributions at interfaces of a confining surface (or surfaces) and other interfaces, 
for example, LC-immersed particle interfaces. The quantity 𝑓𝑖

(𝑗)
 describes the local

interaction free energy contribution at j-th interface and da is the interface surface element. 
In our analysis we will assume that either super-micrometre (colloids) or nano-sized 
objects (nanoparticles) are immersed in LC liquid. Such additional symmetry breaking 
sources could enormously increase the pallet of different stable NLC configurations. We 
use the simplest minimal model which is needed for our analysis in which we express the 
free energy densities entering Eq.(2) as  

𝑓𝑐 =
3

2
𝑎0(𝑇 − 𝑇∗)Tr𝑄2 −

9

2
𝑏 Tr𝑄3 +

9

4
𝑐 (Tr𝑄2)

2

= 𝑎0(𝑇 − 𝑇∗)𝑆2 − 𝑏 𝑆3 + 𝑐𝑆4, (3a) 

𝑓𝑒 =
𝐿

2
|∇𝑄|

2

~
𝐿

2
|∇𝑆|2 +

𝐾

2
|∇n̂|2, (3b) 

𝑓𝑖
(𝑗)

= −
3

2
𝑤ê. 𝑄ê, (3c) 

The condensation term determines the equilibrium degree of nematic order 𝑆 = 𝑆𝑒𝑞  in 
bulk equilibrium, where 𝑎0,  𝑇∗ , 𝑏  and 𝑐  are positive material dependent constants
(Kleman et al., 2003). The minimization of Eq. (3a) yields 

𝑆𝑒𝑞/𝑆0 =
3+√9−8

𝑇−𝑇𝑐
𝑇𝑐−𝑇∗

4
(4) 

for 𝑇 ≤ 𝑇𝑐  where 𝑆0 =
𝑏

2𝑐
= 𝑆𝑒𝑞(𝑇𝑐) and 𝑇𝑐 = 𝑇∗ +

𝑏2

4𝑎0𝑐
. 

The elastic term penalizes spatially non-homogeneities in ∇𝑄 , where 𝐿>0 and 𝐾~𝐿𝑆2 
stand for the representative elastic constant resisting spatial variations in S and �̂� , 
respectively. 
The interfacial term enforces the alignment along the so-called local easy direction �̂� if the 
anchoring constant w is positive. 

4. Results

Below we present our analysis. We first show key factors why bees engineer hexagonal 
patterns. Next we show using our simple modelling how diverse patters could be obtained 
in nature via symmetry breaking mechanisms. 
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4.1.  Hexagonal honeycombs 

Figure 4: An example of honeycomb. There are no shapes other than hexagons, as there is a matrice below for bees to use. 

We analysed a honeycomb shown in Fig.4 of area 37.6 cm times 12.9 cm. We measured 
that the base of one hexagonal cell is 3.25±0.06 mm. We found out that the combined length 
of all the hexagons in the honeycomb is around 17.2 m, which is way more than one would 
anticipate. The area of the cell is 𝐴 =

3√3𝑎2

2
, where a is the base. This gives A=27±1 mm2.

From that we can conclude that the side length of a square with the same area is around 
5.2 mm. If bees used squares instead of hexagons, then the total length of the perimeter 
would be 18.2 m. So we can see that the Honeycomb conjecture holds true. If we assume 
the height of the cells to be 2.8 cm and the width of the walls to be 0.3 mm, than we can 
calculate that the bees save around 8 cm3 of wax per honeycomb.  

4.2. Symmetry breaking generated patterns 
In the following we illustrate how the simple Landau-type approach presented reveals that 
simple mechanisms could generate several patterns and interactions that we observe in 
nature. 
As already mentioned, the free energy given by Eq.(2) favors spatially homogeneous 
patterns aligned along a single symmetry breaking direction in the absence of interfacial 
interactions that would break the symmetry. We emphasize that there exists an infinite 
number of equivalent equilibrium states each pointing along a different symmetry 
direction. The competition between these states is crucial for the diversity of different 
complex patterns that could emerge.  
We first consider simple possible excitations in a bulk equilibrium nematic structure where 
we set 𝑓𝑖

(𝑗)
= 0. For simplicity we restrict to 2D and parametrize the director field by an

angle 𝜃 as  

n̂ = (Cos(𝜃), Sin(𝜃)) (5) 

and assume a constant value of S equal to 𝑆𝑒𝑞 , given by Eq.(4) which minimizes 𝑓𝑐 . 
Minimization of the free energy yields the Euler-Lagrange equation 

∇2𝜃 = 0 (6) 

and the possible solutions read [17] 

𝜃 = 𝑚 ArcTan (
𝑦

𝑥
) + 𝜃0 = 𝑚 ArcTan(𝜑) + 𝜃0. (7) 

Here 𝜑 = ArcTan (
𝑦

𝑥
)  is the azimuthal angle in polar coordinates, m is the so-called

winding number and 𝜃0  is a constant. Note that the condition n̂(𝜑 = 0) = n̂(𝜑 = 2𝜋) 
must be obeyed, which restricts values of m to half integers (due to the axial symmetry the 
states ±�̂� are equivalent):  

𝑚 ∈ {0, ±
1

2
, ±1, ±

3

2
, … } (8)
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Solutions corresponding to 𝑚 = 0  represent the competing equilibrium states n̂𝑒𝑞 =
(Cos(𝜃0), Sin(𝜃0)) aligned along a symmetry breaking direction given by 𝜃 = 𝜃0. 
Furthermore, the solutions with 𝑚 ≠ 0 correspond to topological defects (TDs) whose 
centers are localized at (x,y)=(0,0). Some examples are shown in Figure 5. In 2D the winding 
number m is equivalent to the so-called topological charge, which is a conserved quantity, 
similarly as the electric charge in electrostatics. Namely, if the boundary conditions along 
any closed path are fixed then the total value of m within the enclosed region is conserved. 
Furthermore, defects bearing m>0 and -m are referred to as defects and antidefects. Such a 
pair experiences mutual attraction and tends to annihilate into a defectless state. Figure 6 
illustrates cases including more TDs. Because Eq.(6) is linear, linear combinations of 
solutions are also solutions. A pattern emerging from N defects, where an i-th defect 
possessing a charge 𝑥𝑖 is centered at (𝑥𝑖 , 𝑦𝑖), could be described by 

𝜃 = ∑ 𝑚𝑖 ArcTan (
𝑦−𝑦𝑖

𝑥−𝑥𝑖
)𝑁

𝑖=1 + 𝜃0. (9) 

For example, the top two patterns in Figure 5 present defects bearing m=1/2 (left) and  
m=-1/2 (right). These two defects act as a pair {defect, antidefect} and tend to mutually 
annihilate into a defectless state in which the director pattern is spatially homogeneous. 
The first left panel of Figure 6 illustrates such a nearby pair. Note that the total charge of 
the system equals to zero and such a state is topologically equivalent to a spatially 
homogeneous pattern (i.e., ground state) which has the lowest free energy. Therefore, if 
one starts with a pattern of N defects, where the total topological charge of the system 
equals to zero, then such a pattern would gradually transform into a defectless ground 
state via annihilation of defects and antidefects. This behavior is reminiscent to the system 
of particles and antiparticles bearing positive (e>0) and negative (e<0) electric charges, 
where m mimics the role of e. Similar as in electrostatics, TDs bearing opposite (same) sign 
mutually attract (repeal) and the total charge is in both cases conserved. 
How a complex nonuniform pattern could be stabilized? Let us assume that colloids or 
nanoparticles are present in the system, to which we henceforth refer as particles. For 
simplicity we assume that particles are spherical and their interaction with the enclosing 
LC is described by Eq.(3c). If the coupling constant is relatively weak, such particles do not 
strongly affect the surrounding LC as it is schematically depicted in Figure 7a. Let us 
assume that easy axes of particles are radially oriented, so that particles would act similarly 
as m=1 defects (see the TD pattern in the left middle panel of Figure 5) on larger length 
scales in the strong interaction limit w>>0. In such case the particle will create an antidefect 
bearing m=-1 in order to reduce the total deformation in the system. This is illustrated in 
Figure 7b, where the far nematic director field (with respect to the particle position) tends 
to be spatially homogenous along the vertical direction. Note that in three dimensions the 
accompanying antidefect (described by m=-1 in 2D) could form a topologically equivalent 
defect line which is shown in Figure 7c. However, despite topologically equivalent 
structures shown in Figure 7b and Figure 7c, the symmetry and resulting interactions 
strongly differ. Namely, in these figures the effective nematic pattern acts as a topological 
dipole (Figure 7b) and topological quadrupole (Figure 7c). Therefore, in the presence of 
several particles different deformed nematic patterns could emerge depending on particles’ 
geometries (size, shape) and particle-LC interaction character.   
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Figure 5:  Different topological defects centred at (x=0,y=0). In most case 𝜃0 = 0 if not stated otherwise.  Top panel: (left) m=1/2; 

(right) m=-1/2. Middle panel: (left) m=1; (right) m=-1. Bottom panel: (left) m=1, 𝜃0 = 𝜋/2; (right) m=2. 

Figure 6: Assemblies of TDs. Their total charge is given by 𝑚𝑡𝑜𝑡. Top panel: (left) a pair {m=1/2,m=-1/2}, 𝑚𝑡𝑜𝑡 = 0; (right) two m=1/2 

TDs, 𝑚𝑡𝑜𝑡 = 1. Bottom panel: (left) two anti-parallel pairs {m=-1/2,m=1/2} of TDs, 𝑚𝑡𝑜𝑡 = 0; (right) four |𝑚|=1/2 and one m=1 TDs, 

𝑚𝑡𝑜𝑡 = 1.  



Proceedings of 12th Socratic Lectures 2025 

137 of 260

Figure 7: A spherical particle immersed in a LC body. (a); w=0, spatially homogeneous nematic structure. In (b) and (c) we have 

strong interfacial coupling and consequently an antidefect needs to be introduced in LC patterns. Their cores, where nematic order 

is essentially melted, are red coloured; (b): point-like antidefect and dipolar LC symmetry; (c): line-like antidefect and quadrupolar 

LC symmetry. 

Let us estimate the condition in 3D for which a configuration in Figure 7c is more favorable 
than an undistorted pattern like the one shown in Figure 7a. For this purpose, we roughly 
compare LC free energy penalties of the competing configurations. In the undistorted 
pattern there are no elastic penalties. However, the surface penalty is relatively high, 
because LC molecules are not aligned along directions favored by 𝑓𝑖

(𝑗)
. The total free

energy penalty of the system is then roughly given by  

𝐹(𝑛𝑜𝑛)~𝑤 𝐴 , (10) 

where 𝐴 = 4𝜋𝑅2 is the surface of the particle of radius R and the superscript (non) refers 
to the undistorted LC pattern. On the other hand, in Figure 7c the interfacial conditions 
are perfectly obeyed and consequently a line antidefect of radius r must be formed in order 
to immerse the distorted LC region in an uniform nematic alignment. We assume that the 
key “volume” LC penalty comes from the melting of LC order at the defect line. Namely, 
at the center of defects the orientational order is not uniquely defined and must be locally 
melted. The radius of the melted region is roughly given by the so-called nematic order 
correlation length 𝜉~√𝐿/(𝑎0(𝑇𝐼𝑁 − 𝑇)) (Kleman et al., 2003). Therefore, the dominant free 
energy contribution of the distorted configuration reads 

𝐹(𝑑𝑖𝑠)~𝑎0(𝑇𝐼𝑁 − 𝑇)𝑆0
2(2𝜋𝑟)(𝜋𝜉2)~𝐿𝑆0

24𝜋𝑟. (11) 

In this estimate we took into account Eq.(4) and expressed the resulting free energy close 
to the phase transition temperature and (dis) labels the distorted pattern. Assuming 𝑟~𝑅 
we obtain from the “compromise” criteria 𝐹(𝑑𝑖𝑠)~𝐹(𝑛𝑜𝑛) the condition 

𝜇 =
𝑅𝑤

𝐾
~1 . (12) 

where 𝐾 = 𝐿𝑆0
2. Therefore, in the regime 𝜇 < 1 and 𝜇 > 1 the undistorted and distorted

patterns are realized, respectively.  

5. Discussion

Our study illustrates that symmetry breaking mechanisms could very efficiently generate 
various complex patterns particularly in system where a continuous symmetry is broken. 
In such cases systems are very susceptible to various perturbations, because they have in 
general a rich palette of different ways to respond. Furthermore, continuous symmetry 
breaking enables formation of topological defects (Kibble, 1976; Sethna, 1992; Zurek, 1985). 
Such excitations in many cases behave like flexible bodies and one can assign to them top-
ological charges which are conserved quantities. In interactions and recombination of such 
entities could be predicted based on group theory (Kibble, 1976; Sethna, 1992; Zurek, 1985) 
and systems exhibiting similar symmetries share several similarities in mathematical be-
havior although they could be physically completely different. Axial symmetry enables in 
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