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Abstract: 
The atmosphere of small particles around a spherical massive body is 
theoretically described starting from statistical mechanical principles combined with the 
field approach. It is assumed that the system is in thermodynamic equilibrium and that 
the small particles are explicitly independent and therefore subjected to the Boltzmann 
statistics. The model system is the atmosphere of small particles that are attracted to the 
spherical massive body while their complete approach to the surface of this body is 
hindered by thermal motion. The gravitational attraction between the molecules and 
the massive object is described by introducing a potential of the attractive field and by 
considering that the massive object is the source of the field. The above assumptions 
lead to the formulation of the variational problem based on the 2.nd law of 
thermodynamics in the form of the consistently-related system of differential equations 
for the gravitational potential and the distribution of the molecules within the 
atmosphere. 
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1 Introduction

The objective of modeling atmosphere in deeper space is the study of extraterrestrial bio-
environment including molecules, micro and nano-organisms, and extracellular particles and
vesicles. Formally similar models were constructed to model ionic atmosphere around charged
bodies (see for example Hill, 1986). In this work we derive the expressions for the gravitational
potential, density of the number of small particles and gravitational field in a system composed
of a central spherical massive body surrounded by very many small particles which are subjected
to thermal motion.

2 Theory

2.1 Field of the mass m

We take that the source of the field G is mass m,

∇ ·G = ϱ, (1)

where

ρ =
dm

dV
, (2)

and V is the volume. For convenience of scaling, we introduce a constant γ so that

G = Γγ (3)

and
∇ · Γ =

ϱ

γ
, (4)

We assume that The field Γ has no vortexes,

∇× Γ = 0, (5)

and introduce gravitational potential φΓ,

Γ = ∇φΓ. (6)

Gradient in spherical coordinates reads

∇ = (
∂

∂r
,
1

r

∂

∂φ
,

1

r sinφ

∂

∂φ
). (7)

Combining Eqs.(4) and (6) yields the Poisson equation

∇2φΓ =
ρ

γ
. (8)

2.2 Poisson-Boltzmann equation

Assuming the thermodynamic equilibrium in a system with constant temperature and volume,
and the validity of the Boltzmann statistics, the equality of gravitochemical potential at two
different points (one at a chosen distance r from the massive body’s center and the other at the
surface of the massive body) reads

−m1φΓ + kT ln(
ρ

ρ0
) = −m1φΓ(r0), (9)

142 of  260



where ρ0 is the density of small particles at the surface of the massive body, k is the Boltzmann
constant and T is the temperature. After some rearranging of Eq.(9) we get the Boltzmann
distribution

ρ = ρ0 exp
(m1

kT
(φΓ − φΓ(r0)

)
. (10)

The expression for ρ (Eq.(10)) is inserted into Eq.(8) to obtain the Poisson-Boltzmann differen-
tial equation for φΓ

∇2φΓ =
ρ0
γ

exp
(m1

kT
(φΓ − φΓ(r0)

)
. (11)

As for the spherical geometry, we use the spherical coordinate system so that Eq.(11) transforms
into

1

r

d2(rφΓ)

dr2
=

ρ0
γ

exp
(m1

kT
(φΓ − φΓ(r0)

)
(12)

or
1

r

d2(r(φΓ − φΓ(r0)))

dr2
=

ρ0
γ

exp
(m1

kT
(φΓ − φΓ(r0)

)
(13)

2.3 Consistently related solution of the Poisson-Boltzmann equation

Solving the Poisson-Boltzmann equation (Eq.(13)) yields the gravitational potential φΓ in de-
pendence on r, which is then used to calculate the distribution of small particles ρ and the
gravitational field Γ. For convenience, we introduce dimensionless quantities

y =
m1(φΓ − φΓ(r0))

kT
, (14)

x =
r

r0
, (15)

and
ρ = ρ(r0) exp(y). (16)

The Poisson-Boltzmann equation (11) transforms into

1

x

d2(xy)

dx2
= κ2 exp(y), (17)

where

κ =

√
ρ0r20m1

kTγ
. (18)

This is a nonlinear differential equation of the second order and to our best knowledge, it does
not have an analytic solution. We explore the limiting case where y is small and the exponential
function can be expanded,

exp y = 1 + y, (19)

so that
1

x

d2(xy)

dx2
= κ2(1 + y). (20)

Eq.(20) can be solved analytically,

y = C1
exp(−κx)

x
+ C2

exp(κx)

x
− 1, (21)
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where C1 and C2 are constants. As the density of small particles in not expected to rise to
infinity far away from the massive sphere, C2 is set to 0,

C2 = 0, (22)

so that

y = C1
exp(−κx)

x
− 1. (23)

At the surface of the massive body, x = 1 and we chose the value of the potential to be 0.
Therefore,

C1 = exp(κ), (24)

so that

y =
exp(−κ(x− 1))

x
− 1. (25)

It follows from Eq.(25) and Eq.(16) that

ρ = ρ0 exp(
exp(−κ(x− 1))

x
− 1). (26)

The dimensionless gravitational field is obtained by

dy

dx
=

(κx− 1)

x2
exp(−κ(x− 1)). (27)

.

2.4 Estimation of parameters

In the integral form, Eq.(1) reads ∮
G · dS = m, (28)

where S is the area. In the case of spherical massive body with mass m, the surface around
the mass is taken to be a spherical shell. In this case, only the radial component of the vector
Γ = (Γr,Γθ,Γϕ) will give a nonzero contribution

Γrγ4πr
2 = m, (29)

so that
Γr =

m

4πγr2
, (30)

where
1

4πγ
= G (31)

is the gravitation constant G = 6.67× 10−11 m3/(kg s2). Then,

γ =
1

4πG
= 1.2× 109

kg2

Nm2 . (32)
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Figure 1: Calculated dimensionless gravitational potential y, dimensionless density of small particles ρ/ρ0 and dimensionless
gravitational field in the radial direction dy/dx in dependence on the distance from the center of the spherical massive body
x for κ = 0.28. The gravitational potential is the solution of the variational problem describing thermodynamic equilibrium
of the atmosphere of small particles around the massive spherical body. The atmosphere develops from the surface of the
massive body (x = 1) and expands to infinity.

3 Results

As an example we consider that the massive body has a mass of 6×1024 kg and radius is 6×106m.
We take that the density of particles at the surface of the massive body is ρ0 = 1kg/m

3
and

that the mass of the small particles m1 is 10−26 kg. We take that the temperature is 280 K.
Considering the above,

κ =

√
ρ0r20m1

kTγ
= 0.28. (33)

Figure 1 shows calculated dimensionless gravitational potential y, dimensionless density of
small particles ρ/ρ0 and dimensionless gravitational field in the radial direction dy/dx in de-
pendence on the distance from the center of the spherical massive body x for κ = 0.28.
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4 Conclusions

The field diminishes to 0 at large distances while the potential approaches a constant value as
the value at the surface of the massive body was set according to the density of small particles
at the surface. Consequently, in this model the density of the small particles diminishes, but
does not vanish at large distances.
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