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Abstract:     
The paper discusses global population changes from the beginning of the Anthropo-
cene onset till 2024, based on the ‘tools’ and model concepts of Soft Matter dynamics. 
The ‘bottom-up’ approach, focused on the population data themselves and the distor-
tion-sensitive validation of portrayal via a given scaling relation, is applied. Two expo-
nential Super-Malthusian dependences are considered, namely (i) the empowered ex-
ponential one, and (ii) containing the time-dependent relaxation time. The latter follows 
the dominant linear pattern in the Industrial Revolution times, leading to ‘constrained 
and frustrated’ – type critical scaling for the global population growth. Finally, the evo-
lution of the relative growth rate versus the population itself is considered. The link to 
the empowered exponential behavior is indicated.  
This contribution presents a new cognitive path for studying global population growth, 
exploring the Soft Matter dynamics approach. It offers a reliable fundamental base of 
derived scaling equations, including the meaning of relevant parameters. Studies 
revealed the non-monotonic nature of global population growth, where temporal local 
events can significantly influence leading trends. For Industrial Revolutions, the 
essential meaning of technological innovation in feedback alliance with socio-economic 
innovatively re-shaping surrounding is noted.  
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1. Soft Matter and Global Population as the Socio-Economic Counterpart 

In 1991, Pierre G. de Gennes constituted the Soft Matter category in the Nobel Prize lecture 
(1991) entitled ‘Soft Matter’ (de Gennes, 1991; de Gennes and Badoz, 1996). There is no 
general definition of Soft Matter, but it is related to microscopically distinct systems 
showing common, universalistic features, namely: (i) dominance of mesoscale assemblies, 
(ii) extreme sensitivity to perturbations, (iii) spontaneous mesoscale self-assembling and 
self-organization, (iv) unique phase transitions, (v) common scaling functional patterns 
despite essential microscopic differences. 
The canonic Soft Matter includes: liquid crystals, colloids, micellar systems, critical liquids, 
polymers, supercooled liquids, nanocolloids, vesicles based fluids, bio-systems, micellar 
systems … and also some semi-solids such as plastic crystals, … (de Gennes and Badoz, 
1996; Brochard-Wyart, 2019; Roland et al., 2008; Drozd-Rzoska, et al., 2008; Rzoska, et al., 
2001; Drozd-Rzoska, et al., 2013).  
De Gennes' pointed out a large set of systems, earlier considered mostly in frames of 
material engineering, that can linked in this category due to universalistic features for 
‘isomorphic’ physical properties. In subsequent decades, the concept of Soft Matter 
expanded. Currently, foods are considered the Complex Soft Matter (Mezzenga, et al., 
2005). Living Soft Matter is focused on biosystems from DNA to bacteria and viruses, …, 
including their assemblies (Sinha, 2024). Quantum Soft Matter has become a special 
category (Thedford, et al., 2022). Focused liquid crystals and their nanocolloids studies 
revealed fascinating parallels to the elementary particles world: bosons, fermions, or Higgs 
fields (Jelen, et al., 2024). The concept of ‘Soft cosmology’ has emerged to interpret some 
exceptional properties in Universe sectors (Saridakis, 2021).  
Soft Matter concept opened up extraordinary possibilities for experimental modeling of 
the mentioned systems on the Laboratory Table, with the support of materials engineering 
and monitoring by various physical methods. The Soft Matter cognitive advances yielded 
analytical tools and universal modeling concepts that could be implemented in various 
specific systems. 
Global Population is composed of humans with an inherent tendency to interact, self-
assemble, and spontaneously create ordered local structures - from families, tribes, and 
cities to countries/states & empires. It is related to the rising range of ‘interactions’ related 
to developing management. Notable is the extreme sensitivity to endogenic and exogenic 
perturbations, often leading to qualitative transformations of societies (‚phase’ 
transitions?). Hence, the question arises (Sojecka and Drozd-Rzoska, 2024, 2025): Isn't the 
Global Population a unique Socio-Economic Soft Matter system? 
 

2. Global population scaling: selected reference models 

An adequate and fundamentally justified description of global population changes, using 
model-validated scaling relations, is essential for the insight into past and future-focused 
reliable predictions. It can deliver cardinal data supporting effective socio-economic 
planning and global governance. 
The 'classic' reference for Population Growth is the Malthus equation (Malthus, 1798;  
Weil and Wilde, 2010):  

𝑃(𝑡) = 𝑃0𝑒𝑥𝑝(𝑟𝑡)         𝑙𝑛𝑃(𝑡) = 𝑙𝑛𝑃0 + 𝑟𝑡      
𝑑𝑃(𝑡)

𝑑𝑡
= 𝑟𝑃(𝑡)          (1) 

where time 𝑡 refers to the onset time 𝑡0, coupled with the prefactor 𝑁0, and 𝑟 = 𝑐𝑜𝑛𝑠𝑡 is 
the Malthus rate coefficient.  
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Figure 1. Global population changes from the Holocene (Anthropocene) onset till nowadays, based on data introduced in  

(Sojecka and Rzoska, 2024). Linear dependence is related to the basic Malthus behavior and red-horizontal lines to ~constant 

population in the given time domain. Subsequent historical epochs are indicated by characterizing them with pictures, which 

include messages regarding global population values.  

 
The right part of Eq. (1), shows the basic assumption, namely that the population rise in 
the subsequent time domain is proportional to the current population, following the 
constant rate coefficient 𝑟. It directly leads to the exponential equation, shown in the left 
part of Eq. (1). For the Malthus model, one should expect linear population changes when 
using the semi-log plot, as shown in the middle part of Eq. (1).  
Figure 1 presents global population changes from the Anthropocene onset (10 000 BCE) 
till nowadays, using the new data set introduced in (Sojecka and Drozd-Rzoska, 2024 and 
2025). It is based on collecting global population data from a few sources and their 
subsequent numerical filtering to obtain an analytic set for which data-related derivative 
analysis is possible. The global population followed the linear behavior, in the semi-log 
scale, described by Malthus’ Eq. (1) for ~9 millennia, - related to Neolithic times, splitting 
into domains: Early & Late’. The crossover can be linked to climate changes. From the end 
of the Bronze Era, via Antiquity, Medieval, …. till nowadays - the increasingly nonlinear 
behavior appears in Figure 1. For such pattern, beyond the basic Malthus model (Eq. (1)), 
the name Super-Malthus (S-M) behavior was proposed (Sojecka and Drozd-Rzoska, 2024 
and 2025). The significant feature of the discussed S-M equations was the relaxation time 
 introduced instead of the Malthus rate coefficient, namely  = 1/𝑟. It allows a simple 
estimation of 50% change from the given 𝑃(𝑡) value: 𝑡50% =   ln2. 
In the first half of the 19th century, Verhulst proposed the model extending the Malthus 
approach by including the factor directly addressing required resources, such as food. It is 
explicitly visible for the model-related differential equation (Verhulst, 1847; Vandamme 
and Rocha, 2022):  

d𝑃(𝑡)

d𝑡
= 𝑟𝑃 − 𝑠𝑃2 = 𝑃(𝑟 − 𝑠𝑃) = 𝑃(𝑡) (𝑟 −

𝑃(𝑡)

𝐾
)   𝐾 ≫ 𝑃(𝑡)   

d𝑃(𝑡)

d𝑡
= 𝑟𝑃       (2) 
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where 𝑠 is the Verhulst parameter describing available resources in the given systems. 
The carrying capacity coefficient 𝐾 = 1 𝑠⁄  was introduced by Pearl (Pearl, 1927; Volterra, 
1928).  
Eq. (2) shows that the carrying capacity coefficient 𝐾 can be interpreted as the maximal 
population that can be hypothetically maintained in the given system with a given amount 
of resources. The right-hand part of Eq. (2) shows that for 𝐾 ≫ 𝑃(𝑡) it reduces to the basic 
Maltus Eq. (1).  
For 𝑠𝑃→ 𝑟, increasing distortion from the unlimited Malthus-type rise appears. Finally at 
𝑠𝑃 = 𝑟, related to d𝑃(𝑡) d𝑡⁄ = 0, the population rise terminal is reached. 
For the Verhulst equation, one can consider the following scenarios occurying after the 
first Malthusian growth stage (Sojecka and Drozd-Rzoska, 2025): 
(i) For infinite resources, only permanent Malthiusian-type population growth occurs.  
(ii) A constant amount of renewable resources (𝑠(𝑡) = 𝑠 = const) is available. It remains 

constant despite the population rise. The condition d𝑃(𝑡) d𝑡⁄ = 0  means the 
transition to a plateau where 𝑃(𝑡) = const.  

(iii) A constant amount of non-renewable resources is available. It irreversibly 
decreases with the population rise. The rise terminal is related to 
d𝑃(𝑡 = 𝑡𝑚𝑎𝑥) d𝑡⁄ = 0, and for 𝑡 > 𝑡𝑚𝑎𝑥  the population declines.  

(iv) The population is ‘specifically sustainable’, i.e., it limits demands for ‘resources’ by 
restricting needs. Consequently, the amount of resources ‘relatively increases’, 
postponing the terminal condition d𝑃(𝑡 = 𝑡𝑚𝑎𝑥) d𝑡⁄ = 0. 

A model manifestation of the option (iv) can be the evolutionary size reduction of animals 
on isolated islands. For the human population, it can be associated with lesser demands 
for food, raw materials, and limited harmful environmental impacts, which correlates with 
general requiremen0st of the Sustainable Society.  
The integration of the differential Eq. (2) leads to the basic Verhulst scaling equation 
(Verhults, 1847; Sojecka and Drozd-Rzoska, 2025):  

𝑃(𝑡) =
𝐾

1+𝐶𝐾exp(−𝑟𝑡)
=

1

1 𝐾⁄ +𝐶exp(−𝑟𝑡)
        (𝐾→∞)       𝑃(𝑡) = 𝑃0exp(𝑟𝑡)        (3) 

where 𝐶 = 𝑃0 − (1 𝐾⁄ ). The right-hand part indicates the simplification to the Malthus Eq. 
(1). Malthus and Verhulst scaling equations remain a significant reference for population 
studies. Nevertheless, the ‘empirical’ pattern of global population growth does not 
correlate with the abovementioned characterization. However, they are an essential and 
proven tool in microbiology, general biology, epidemiology and medicine (Vandamme, 
2021). 
There are currently many model concepts for describing global population changes 
(Umpleby, 1990). For the authors, worth noting is the ‘hyperbolic. Doomsday’ equation 
(von Foerster, et al., 1960):  

’𝑃(𝑡) =  
1.79×1011

(2026.87−𝑡) =0.99   ∝     
1

𝐷 − 𝑡
                   (4) 

where 𝐷 = 2026.87 was linked to Friday, 13 November 2026, Doomsday.  
It was validated via the log-log scale plot analysis for 28 global population data ranging 
from ~500 CE till 1958. The title of von Foerster et al., (1960) report recalling ‘Doomsday’, 
and the suggestion of the ‘human extinction’ before 2026, led to decades of commentary 
and remarks in the general mass media, but also criticism from population change 
researchers, who mainly criticized the lack of model justification (Umpleby, 1990; 
Yakovenko, 2025). However, an excellent descriptive agreement, with the surprising 
simplicity of Eq. (4), remained a surprising fact.  
From the 1970s, more historical estimates of global population data became available, and 
depending on the data set tested and the time period selected, the power exponent ~0.7 <
 < 1 was reported for Eq. (4) (Taagapera, 1979). 
In the last decade, Taagapera and Nemčok developed a scaling function that avoids 
the ’Doomsday’ singularity and can be reduced to the von Foerster scaling functional form. 
They suggest ‘stationary, terminal phases’ as the generic feature of global population 
development: 1st at Roman Empire times, & 2nd in the last decades. They were scaled as 
follows (Taagapera, 2014; Taagapera and Nemčok, 2024):  



Proceedings of 12th Socratic Lectures 2025    

 

 159 of 260 

 

𝑃(𝑡) =
𝐴

[𝑙n(𝐵+𝐸)]𝑀  ,    𝐸 = exp[(𝐷 − 𝑡) ⁄ ]             (5) 

associated with 𝐷 = 100 CE for the 1st (Prehistoric- Roman Empire ) period and 𝐷 = 1980 
for the second (early Medieval – Nowadays).  
Equation (5) offers an excellent reproduction of the global population changes. However, 
it contains 5 parameters for each mentioned period and requires nonlinear fitting. Notable, 
that the experience gained in Soft Matter systems for similar patterns of data change led to 
the general indication that optimal scaling equations should rely on no more than 3-4 
parameters.  
A significant shortcoming of the analysis trend initiated by the work of (von Foerster et al.,  
1960) seems to be the lack of fundamental justification for such a unique characterization. 
Nevertheless, the unique descriptive efficiency seems to remain the fact (Drozd-Rzoska et 
al., 2023). 

 

3. Localized & Soft Matter view on Global Population Growth 

The standard analytic method for testing population changes relies on fitting data via a 
given scaling equation in an ad hoc selected time domain, often using nonlinear routines. 
This report presents a novel bottom-up approach to Global Population dynamics. It does 
not focus on fitting via a given scaling equation in an arbitrary time domain but on 
population data itself. It is related to the following basic issues (Sojecka and Drozd-Rzoska, 
2024, 2025):  
1. For the optimal description of P(t) changes, and reliable forecasts, it is necessary to 

analyze trends over a sufficiently long period.  
2. The crucial problem for global population growth data constitutes multiple 

estimates of population data, particularly when shifting to the past. The authors 
reduced this problem by implementing numerical filtering to a large data set 
collected from different sources.  

3. The latter led to the unique set of 198 global population data from 10 000 BC - 2024, 
with an analytic pattern. i.e., the derivative analysis is possible.  

4. The linearized & derivative-based analysis, recalling 3-parameters model –
equations, has been carried out for the' new generation' data set.  

5. The latter yielded distortions-sensitive insights into local distortions, revealing time 
domains where a given scaling equation can be used. It also derived optimal values 
of relevant parameters - consequntly the nonlinear fitting routine was avoided.  

6. The Soft Matter base of model scaling relations offers a fundamental reference 
meaning of relevant parameters.  

In refs. (Sojecka, Drozd-Rzoska; 2024, 2025) two Super-Malthus (S-M) equations have been 
developed and implemented to discuss Global Population Growth. The first one is the 
‘empowered’ S-M1 equation:  

𝑃(𝑡) = 𝑃0exp (
𝑡


)


      ln 𝑃(𝑡) =  ln𝑃𝑜 +
𝑡


        (6) 

where 𝑃0  is the prefactor related 𝑡 = 0, in the given report related to the mentioned 
Anthropocene onset; parameters ,  = 𝑐𝑜𝑛𝑠𝑡.  
The right-hand part shows that the simple semi-log plot analysis, successful for the basic 
Malthus Eq. (1), does not yield relevant parameters due to the essential non-linearity, 
related to the exponent  . Nevertheless, one can consider the derivative of the right-hand 
part of Eq. (6) and, subsequently implement the log-log scale analysis:  

𝑙og10 [
dln𝑃(𝑡)

d𝑡
] = log10𝐺𝑃 = log10 (




) + ( − 1)log10𝑡 = 𝐴 + 𝐵 × 𝑥  `      (7) 

where 𝑥 = log10𝑡.  
The plot of transformed 𝑃(𝑡) data via Eq. (7), namely 𝑦 = log10𝐺𝑃 = log10[dln𝑃(𝑡) d𝑡⁄ ] vs. 
𝑥 = log10𝑡, validates domains of S-M1 description via the linear behavior, for which the 
linear regression yields optimal values of relevant parameters, namely  and .  
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Eq. (6) simplifies to the basic Malthus Eq. (1) for the power exponent  = 1. Recalling 
consideration related to Soft Matter, it can be related to systems with a single, dominant 
relaxation process. A continuous distribution of multiple relaxation times is related to  
 ≠ 1. It can be associated with the feedback process amplification for  > 1 and the 
system ‘internal energy’ dissipation for  < 1 (Sojecka and Drozd-Rzoska, 2024).  
The second Super-Malthus relation (S-M2) is associated with the following dependence 
(Sojecka and Drozd-Rzoska, 2024):  

𝑃(𝑡) = 𝑃0exp (
𝑡

(𝑡)
)           (𝑡) = 𝑡 × ln[𝑃0 𝑃(𝑡)⁄ ]  .             (8) 

In the above relation, the concept of the local and time-dependent relaxation time and then 
growth rate 𝑟(𝑡) = 1 (𝑡)⁄ , has been introduced. It simplifies to the basic Malthus Eq. (1) 
for (𝑡) =  = 1 𝑟 = const⁄  in the given time domain.  
The direct analysis of 𝑃(𝑡) data via S-M2 relation (left-hand part of Eq.(8)) might seem to 
be impossible because of the apriori unknown (𝑡) functional form. Nevertheless, one can 
determine (𝑡) temporal changes, as shown in the right-hand part of Eq. (8). The result of 
such analysis is shown in Figure 2.  
The plot reveals that the relaxation time (𝑡) and growth rate 𝑟(𝑡) are constant for the 
extreme period reaching ~700 years, from the mid-Medieval Age till the Enlightenment 
epoch onset, as shown by horizontal dashed lines. It means that in this extreme time 
domain, the global population growth dominantly followed the simple Arrhenius pattern 
(Eq. (1)), with a huge distortion matched with the Black Death pandemic times. From the 
beginning of the 18th century till nowadays, a new general pattern is visble: 

(𝑡) = −𝑎 + 𝑏𝑡                 𝑟(𝑡) = 1 (−𝑎 + 𝑏𝑡)⁄                (9)  

where constant parameters 𝑎, 𝑏 > 0. 
Substititutrig above to Eq. (8) one obtains the exponential relation with internal critical-
like singular change (Sojecka and Drozd-Rzoska; 2024):  

𝑃(𝑡) = 𝑃0exp (
𝑡

(𝑡)
) = 𝑃0exp (

𝑡

−𝑎+𝑏𝑡
) = 𝑃0exp (

𝑐𝑡

𝑇𝐶−𝑡
) = 610 × exp (

1.62𝑡

2216−𝑡
)      (10) 

where 𝑃0  is related to the Industrial Revolutions times onset at 𝑡 = 1710, detected in 
Figure 2.  
Notable is the link to the reference hyperbolic/Doomsday Eq.(4) (Von Foerster et al., 1960). 
Namely, when applying the Taylor series expansion for Eq. (10) one obtains (Sojecka and 
Drozd-Rzoska, 2024) the following relation: 

𝑃(𝑡) = 𝑃0exp (
𝑐𝑡

𝑇𝐶−𝑡
) = 𝑃0 (1 +

𝑐𝑡

𝑇𝐶−𝑡
+ ⋯ ) ∝

1

𝐷−𝑡
             (11) 

Equations (9), (10), and Figure 2 indicate the singularity at the year 𝑇𝐶 ≈ 2216, whereas 
for von Foerster et al. (1960) Eq. (4) the ‘Doomsday year’ appeared 𝐷 ≈ 2026. Eq. (11) 
shows that this difference can result from neglecting higher-order terms in Eq. (4). 
The model scaling Eq. (10) parallels relations characterizing dynamics in constrained and 
frustrated critical systems, with inherent spontaneously appearing multi-element critical 
fluctuations. Hence, for Eq. (10) and von Foerster (1960) Eq. (4), the name ‘critical’ instead 
of ‘hyperbolic’ seems to be more appropriate.  
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Figure 2. Temperature changes of the population growth rate 𝑟(𝑡) coefficient and the relaxation time (𝑡) = 1 𝑟(𝑡)⁄ . Related 

historical epochs and dates are noted. Horizontal dashed lines are related to the basic Malthus behavior (Eq. (1)), with 𝑟 = 𝑐𝑜𝑛𝑠𝑡 

and  = 𝑐𝑜𝑛𝑠𝑡. 

 
The above reasoning considered the time-related growth of the global population. 
However, one can consider the relative population growth (RGR) vs. the population rise 
itself. In ref. (Lehman et al., 2021) considered the application of Verhulst Eq. (3) via the 
application of Pearl (1920) and Volterra (1927) concept of using a set of (𝑟, 𝑠) parameters 
in subsequent time domains, and then a set of Verhulst equations for which next steps 
transformations (𝑟𝑖 , 𝑠𝑖) → (𝑟𝑖+1, 𝑠𝑖+1) occurred, before reaching the ‘saturation phase’ for 
the previous one. Lehman et al. (2021) explained these steps by overcoming subsequent 
bio- and eco-barriers during the global population development since the Anthropocene 
onset. In ref. (Lehman, et al., 2021), particular attention was drawn to the population 
relative growth rate (RGR) 𝐺𝑃(𝑡𝑖,𝑃𝑖). Lehman, et al. (2021) considered changes in this 
parameter via the discrete analysis of population changes 𝑃𝑖  in subsequent time 
domains 𝑡𝑖. The resulted plot 𝐺𝑃(𝑡𝑖,𝑃𝑖) vs. 𝑃𝑖  revealed two linear dependences with 
crossover ~1965, namely:  

 

𝐺𝑃(𝑡, 𝑃) = 𝑎 + 𝑏𝑃(𝑡)  ,                     (12) 

 

where 𝑎, 𝑏 = 𝑐𝑜𝑛𝑠𝑡 and the slope parameter 𝑏 > 0 for periods  10 000 𝐵𝐶𝐸 < 𝑡 < 1965 
and 1965 < 𝑡 < 2010. The crossover is associated with population 𝑃 ≈ 3.2 billion. 
In ref. (Lehman et al., 2021) such behavior was discussed as the argument supporting the 
portrayal of the global population changes via Verhulst model (Eqs. (2) and (3)), with 
multi-parameter crossover introduced by Pearl (1927) and Volterra (1928). 
Very recently Sojecka and Drozd-Rzoska (2025) introduced the analytic 𝐺𝑃(𝑃, 𝑡) factor, 
instead of the discrete form earlier used. It is based on the new analytic set of global 
population data mentioned above (Sojecka and Drozd-Rzoska, 2024), namely:  

𝐺𝑃(𝑡𝑖, 𝑃𝑖) =
1

𝑃𝑖(𝑡𝑖)

𝑃𝑖(𝑡𝑖)

𝑡𝑖
      𝐺𝑃(𝑡, 𝑃) =

1

𝑃(𝑡)

d𝑃(𝑡)

d𝑡
=

d𝑃(𝑡) 𝑃(𝑡)⁄

d𝑡
=

d𝑙𝑛𝑃(𝑡)

d𝑡
   .         (13) 
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Figure 3. The global population-related changes of relative growth rate (RGR) coefficient since the Anthropocene onset till 

nowadays expressed vs. the global population values itself. The upper scale presents the coupled time scale. The brown vertical 

line indicates the Roman Empire terminal, which is also considered the early Medieval Age onset. Two domains (1) and (2), and 

the crossover between them are indicated. For domain (1), extended down to 10 000 the complete portrayal is nonlinear: in the plot 

via the second-order polynomial. Prepared using data shown in Figure 1 and ref. (Sojecka and Drozd-Rzoska, 2025). The linear 

description of the 𝐺𝑃(𝑃) seems to be limited to ~2 centuries in domain (1). 

 
Figure 3 shows the results of such analysis. It reasonably agrees with a similar plot 
presented in ref. (Lehman, et al., 2021) where the discrete definition 𝐺𝑃(𝑃𝑖 , 𝑡𝑖) was used. 
The agreement includes two linear domains appearing for the eye-view test in Figure 3, as 
in ref. (Lehman et al.,2021). However, following Eq.(2), parameters describing the linear 
behavior via Eq. (12) should explicitly determine key parameters for the Verhults Eq. (3), 
namely: 𝑟 = 𝑎 and 𝑠 = 𝑏. It means that following the above reasoning, related to Figure 
3 and Eq. (12), only two sets of parameters (𝑟1 = 𝑎1, 𝑠1 = 𝑏1 ) and (𝑟𝑠 = 𝑎2, 𝑠2 = 𝑏2 ) for 
domains (1) and (2) in Figure 3 are allowed. It does not agree with the multi-parameter 
concept by Pearl (1927) and Volterra (1928). Also notable that the substitution of (𝑟1, 𝑠1)) 
and (𝑟2, 𝑠2) parameters to the Verhulst model Eq. (3) does not describe global population 
data 𝑃(𝑡) in the subsequent two domains.  
The above can question the ability of the Verhulst model for scaling global population 
growth.  
The behavior presented in Figure 3 based on the mentioned new generation data offers a 
higher resolution than earlier tests. It can indicate that the linear domain of 𝐺𝑃(𝑃) changes 
are relatively limited (black line in Figure 3). For the period reaching 10 000 BCE, the 
nonlinear evolution (2nd order polynomial) seems to offer better portrayal (red curve in 
Figure 3). Worth stressing problem of data presented in Figure 3 is the ‘compression;’ and 
superimposition for a colossal time domain covering 10 millennia, till ca. 500CE.  
Figure 4. shows RGR evolution, presenting data from Figure 3 in the log-log scale, two 
overcome the ‘compression problem’ mentioned above.  
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Figure 4.  Relative Growth Rate (RGR) parameter changes vs. global population, for basic data from Figure 3 presented in the 

log-log scale. The upper scale presents the coupled time scale. Some characteristic epochs are indicated.  

 
The emergence of the ‘complex structure’ for Antiquity and Pre-Antiquity times and the 
grand RGR collapse for the Roman Empire times is notable. The linear portrayal of 
domains (1) and (2) is notably better for the log-log plot in Figure 4 than for the reference 
‘direct’ presentation in Figure 3. The extension of the fair linear behavior from the Roman 
Empire collapse to the crossover at ~1966 is notable.  
Taking into account the definition of the ‘analytic’ RGR parameter (Eq. (13)) and log-log 
scale in Figure 4, one obtains the direct link to Eq. (7) associated with the empowered super 
Malthus S-M1 Eq. (6). Following the latter, the crossover year 𝑡𝑐𝑟𝑜𝑠𝑠 ≈ 1966, related to the 
global population 𝑃 ≈ 3.26billion, can be associated with the power exponent crossover 
in S-M1 Eq. (6):  > 1   < 1.  
Following general features of the empowered Super-Malthus S-M1 equation, it can suggest 
the transition from a world where feedback interactions between different globally 
relevant factors amplified the ‘Global Human Energy (GHE)’ to a world where this energy 
is dissipated. It can mean that starting from the year ~1966, the global population began to 
spontaneously perceive the impact of grand constraints related to reaching real planetary 
borders – spatial and ecological.  
 

4. Conclusions 

This report presents a resume and new conclusions related to the recent works of the 
authors (Sojecka and Drozd-Rzoska, 2024 and 2025) and the report by Lehman et al., (2021). 
Complex Soft Matter Science methodology and tools not previously used in global 
population research have allowed a new discussion related to a new model scaling 
equation associated with fundamentally defined relevant parameters. The distortions-
sensitive analysis showed significant local-temporal variability of global population 
changes. This casts doubt on attempts to study global population change based on the 
assumption of the possibility of monotonic description over long time intervals. The 
temporal variability and locality of global population growth are related to specific 
exogenous and endogenous disturbances, indicating that attempts to estimate future 
trends for the more distant future may be unreliable. 
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