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Abstract:

A model is presented to describe curvature waves in analogy with derivation of light
waves in free space. Starting from Maxwell-Heaviside equations, the differential wave
equations for electric and magnetic fields are derived, and their solution, i.e. sinusoidal
depedence on space and time at precisely defined speed - determined by the permittivity
and permeability of free space - is given. This formalism is then applied to the gravitational
and kinetic fields subjected to the curvature of space. Massive bodies are described as
curvature lumps - regions with given average space curvature distinguished from the
background space curvature. Companion kinetic field is represented by the deviation of
the angular frequency of the curvature lump from the baseline. The identity of the
companion field was indicated from dimensional analysis.

Keywords: Gravitation; Curvature; Gravitational waves; Curvature waves; Speed of
gravitational waves; Maxwell equations; Heaviside
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1 Introduction

Following empirical investigations, gravitational, electromagnetic, the weak and strong nu-
clear interactions were outlined as fundamental physical interactions. In line with the as-
sumption that physical laws are universal, a common origin of these interactions is being
sought theoretically and experimentally, but an unified interaction theory has not yet been
acknowledged (Weinberg, 1980). While experiments involving electromagnetic fields are
accessible within the macroscopic scale, gravitational and nuclear interactions present chal-
lenges as regards experiments. The theory of general relativity indicates that gravitational
interaction is connected to the curvature of space (Einstein, 1916). Following this idea, the
analogy with derivation of the light waves from Maxwell-Heaviside equations (Heaviside,
1894) and the first generation model of gravitation described in (Kralj-Igli¢, 2025), here we
derive the equations describing the waves of the gravitational and kinetic fields. The velocity
of the waves turns out to depend on two constants, the gravitational permittivity of space
e and the kinetic permeability of space pug. First we present the formalism with which the
light waves are derived from the Maxwell-Heaviside equations and then we use this formalism
for derivation of the ”gravitokinetic” waves.

2 Maxwell - Heaviside model of electromagnetism

James Clark Maxwell constructed his theory based on the vector potential of the magnetic
field A and scalar potential of the electric field ¢ (Hunt, 2012). Oliver Heaviside re-expressed
the Maxwell’s theory in a more concise form based directly on the electric field E and
magnetic field H (Heaviside, 1894; Hunt, 2012). Heaviside then used his energy-flow theorem
and derived what he called the “second circuital law,” which related the curl of E directly
to the time derivative of a ”fitting partner” in the Maxwell’s first circuital law (H), and the
curl of H to E and its time derivative (Hunt, 2012). By combining these expressions with
Maxwell’s expressions for the divergence of the electric displacement D and the magnetic
induction B, Heaviside arrived at the compact set of four differential vector relations that are
now known as Maxwell’s equations. Heaviside published the energy-flow theorem and built
his model of electromagnetism in a series of papers (Hunt, 2012). As the form of the equations
was of importance to us, by nominating them as the Maxwell-Heaviside equations we indicate
the Heaviside’s important contribution to the simplicity and clarity of the formulation.

3 Theory

3.1 Description of light by electric and magnetic field

We take that the source of the field D is charge g,

V ' D == th <1)
where d
q

el — 5 2

Pel av (2)

and V is the volume. For convenience of scaling, we introduce a constant ¢y and a field E
so that
D = ¢E. (3)
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Proportionality constant gy = 8.9 x 107!2 As/Vm is called the permittivity of free space.
The magnetic field B has no monopole sources

V-B=0 (4)
with proportional field H

B =uoH (5)
where 19 = 47 x 1077 Vm/As is called permeability of free space.

The vortex equations are
0B

E=——-.
V x o (6)
and oD

VXHZJel‘FE, (7)
where d d

o 4 (4

Jel = das (dt) Iel (8)

is the density of mass current, S is the cross section area and I is the unit vector in the
direction of the current. The movement in straight lines can be included in considering
rotation with respect to limiting small curvature.

Consider there are no charges and therefore no current so that

V-D=0. (9)
and
jel =0. (10)
Applying a double vector product with vector nabla on the vortex equations, we obtain
oD
VXxVxH=Vx(——). (11)
ot
and 9B
VXVXE:VX(E). (12)

The double vector product of some vector X reads
VxVxX=V(V-X)-VX (13)

so that with Eqgs.(??) and (10)

V xVxH=-VH, (14)
and
VxVxE=-VE. (15)
Combining Eqs.(36) and (40), and (12) and (15) yields
oD
_V2H = = 1
VAH =V x (- 52), (16)
0B
~V’E = -——). 1
\Y V x ( T ) (17)

Changing the consecutive order of operations in the right hand side of Eq.(18) and (29), and
Eq.(42) and (29) yields

v = (2D (18)
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d(V x B)
V2E = (———). 19
(=) (19)
Considering Eqgs.(6) and (7), we get
0’H
V?H = — 20
E0H0 503 (20)
and
’E a2 21
\Y% = Eolo 12 ( )
with periodic solutions with respect to time and space
E = Egsin(k - r — wt) (22)
and
H =Hpsin(k - r —wt + 9) (23)

where k is the wave vector, r is the displacement, ¢ is the phase lag and w is the angular
frequency of the waves.

The velocity of the light waves c is given by

1
c=4/ =3 x 10%m/s. 24
Eolo / ( )

3.2 Description of gravito-kinetic waves

Assuming that the space is isotropic, we take that the source of the field G¢ is a lump of
the space curvature,
V- (Ge — Gep) = (H), (25)

where H is the mean curvature of the space
1
H = 5(Ci +C), (26)

C and C; are the two principal curvatures and Ge g is the baseline curvature of the space.
For convenience of scaling, we introduce a constant ¢ and, analogously with Maxwellian
notation, call it gravitational permittivity of the space (Nyambuya, 2015)

GC = E@GE8. (27)
We introduce companion kinetic fields K,
V- (K-—Kp =0 (28)

and K
K = uxr (29)

where pg is a proportionality parameter coupling the kinetic fields that we call kinetic
permeability of the space and Ky is the baseline kinetic field.

The vortex equations are
I(K — Ko)

. (30)

Vx(g—g)=—
and
0(Ge — Gey)

V x (k— ko) =jc + En )
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where j is the density of the current of curvature lumps

Jo = % (T) Ic, (32)

dS is cross section element, ¢ is time and I is the unit vector in the direction of the current.
Subtraction of the baseline parameters G¢ o and Kq denotes that the expected undulations
will be about these values.

Consider that there are no curvature lumps and therefore
V- (Gc —Ggp) =0 (33)

and
j=0. (34)

Applying a double vector product with vector nabla, we obtain from Eq.(30),

K-K
and (G G
VXVX(HHO)—VX((Ca_tC’O>. (36)
The double vector product reads,
VxVx(g—go)=V(V-(g—80)) — V(g — 8o) (37)
and
V XV x (k—ko) =V(V-(k—rg)) — V2(k — ko) (38)
and so that with Eqgs.(33) and (28)
VXV x(g—go)=-V(g—go) (39)
and
V x V x (k= ko) = =V2(k — ko) (40)
Combining Eqs.(35) and (39), and Eqgs.(36) and (40), respectively, yields
K -K
V(g ) = v x (- OB K (a1)
and 3G G
—V2(k — ko) = V x (_W). (42)

Changing the consecutive order of operations in the right hand sides of Eqgs.(41) and (42),
and considering Eqgs.(27) and (29), and Eqgs.(30) and (31) yields

0%(g —
V(g —go) = 5GMK% (43)
and o2
(s ) = e L= 10) m

with periodic solutions in dependence of time and space

g =go + Agsin(kg - r — wt) (45)
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and
k = ko + Arsinkg - r — wt + ) (46)

where Ag and Ak are the amplitudes, kg is the wave vector, r is the displacement, ¢ is the
phase lag and w is the angular frequency of the waves. The velocity of the waves cg is given

by
[ 1
cg = . (47)
EGHUK

4 Estimation of fields and constants

We made dimensional analysis of the model. The dimension of the curvature is 1/m. It
follows from Eq.(25) that the field G is dimensionless. Further, it follows from Eq.(31) that
the dimension of x is m/s. We take that the kinetic field is angular frequency

K=0 (48)

with dimension 1/s. It follows from Eq.(30) that the dimension of g is m/s? representing
gravitational acceleration. Using Eqs.(27) and (29) yields also the dimensions of the propor-
tionality constants g (s?/m) and ug (1/m), respectively. The dimensions of the fields and
constants are concisely given in Table 1. It can be verified by using Eq.(47) that the velocity
of gravitational waves has the correct dimension m/s. It can be noted that the dimension of
the mass (kg) is not involved in the model.

Table 1. Dimensions of the fields and constants.

Quantity Dimension

G

g m/s?
K=0Q 1/s
K m/s
£G s%/m
K 1/m

To estimate the constant e we consider the definition of gravitational field by the mass (Nyan-
buya, 2015; Kralj-Igli¢, 2025),
V-G =p, (49)

where
dm

pP= av’ (50)

m is mass and V is volume. The companion field was introduced as (Kralj-Igli¢, 2025)

G =T (51)
with
 AxG’

where G is the gravity constant 6.67-10~! Nm? /kg? so that (Nyanbuya, 2015; Kralj-Igli¢, 2025)
v =1.193 x 10° kg s*/m3 (53)
To link the constants v and €5, we connect the mass and the curvature lump,

m = Aom (C)V (54)
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where Acj, 18 an unit constant
Aem = kg/m? (55)
so that
g =AcmT (56)
and (Kralj-Iglic, 2025)
£q = v/Aom = 1.193 - 10%s% /m. (57)

While the gravitational permittivity e¢ could be estimated from the gravitational acceleration
on the Earth, estimation of the constant ux would require the data on the effect of the movement
of a massive flux on another massive flux or the measurement of the velocity of the gravitational
waves. Instead we estimated pg from Eq.(47). Some results of the determination of the velocity
of the gravitational waves (experimental and theoretical) and the estimated px are shown in
Table 2.

Table 2. Velocity of gravitational waves and the corresponding kinetic permeability of space. ¢ = 3 x10% m/s.

Reference Velocity uxr (1/m)
Van Flanders (1998) 2 x 1010 m/s 2.10 x10~3°
Whitfield (2003) c 9.31 x10727
Fomalont and Kopeikin (2003) 1.06 ¢ 8.19 x10727
Kopeikin and Fomalont (2006) ¢ 9.31 x10~27
Luo et al. (2013) <13x10" m/s 49.3x 10777
Moffat (2014) > c >9.31 x10727
Nyanbuya (2015) c 9.31 x10727

Cornish et al. (2017)

Liu et al. (2020)

de Rham and Tolley (2020)
Ito (2023)

Dai and Stojkovic (2024)
Delgado et al. (2025)

(0.55 - 1.42) ¢ (30.4 - 4.45) x10~%7
(0.97 - 1.01) ¢ (9.78 - 9.02) x10~27

>c <9.31 x10~27
>c <9.31 x10~27
>>c <<9.2 x10~27
>c <9.31 x10~27

5 Discussion and Conclusions

We considered gravitation due to the curvature lumps of the space affected by the movement.
Following the elegant Maxwell-Heaviside equations originally derived for the electric and mag-
netic fields, we have stated the gravitational field as a source of a space lump with notably higher
average mean curvature than the background. We have introduced a companion kinetic field.
Dimensional analysis showed that the unit of this field is 1/s and indicated that the field could
be the angular frequency. This seems reasonable as rotational motion produces acceleration that
is at the essence of the gravitational effect. We have derived the wave equation and expressed
the velocity of the gravitational waves by two parameters: gravitational permittivity and ki-
netic permeability. We have estimated gravitational permittivity from the Earth’s gravitational
acceleration. We have estimated the kinetic permeability from gravitational permittivity and
velocity of gravitational waves reported in the literature. While some authors claim that the
velocity of the gravitational waves equals that of the light, some experimental and theoretical
works report considerably different values (Table 2).
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We have made a step forward from the 1.st generation model (Kralj-Igli¢, 2025) to formulate
the equations only with the quantities having units of length and time thereby indicating that
the companion field is kinetic. Mass is not explicitly included in the model which is in the spirit
of Einstein’s notion that the gravitational waves are the movements of the coordinate system
(Einstein, 1916). Analogy with Maxwell-Heaviside equations for the gravitational field has been
previously proposed by Nyanbuya (2015). The companion field was nominated the gravitomag-
netic field and the waves were nominated gravitomagnetic waves. However, in contrast with our
model, Nyanbuya (2015) included in his description the mass m and introduced with further
development of the theory the Lorenz-like equation including the scalar and vector gravitomag-
netic potentials. Our presentation of the Maxwell-Heaviside equations is essentially equivalent
to the initial presentation of Nyanbuya (2015), specifically regarding the gravitational field, but
deviates in identification of the companion field. Nyanbuya’s elaboration of the companion field
is based on the formalism of the general theory of relativity, however it retains mass as one of
the parameters. Our elaboration of the companion field based on dimensional analysis is simple
but includes a bold step in eliminating mass from the formulation of the gravitational field.
Instead of a black box parameter - mass - we indicate the origin of the increased density of the
substance, i.e. the curvature effects. In this regard, packing of highly curved space formations
is associated with greater mass. For simplicity, we have introduced the packing of space with
an average value of the curvature, however, the dimension of the parameter (H) (i.e. 1/m) was
sufficient to eliminate mass and identify as a possible companion field the angular frequency
K=Q.

The attempts to better understand the origin of the gravitational effects include some modern
theories proposing that they derive from entropy (Verlinde, 2011) or torsion of the space-time
(Aldrovandi and Pereira, 2013), or thermodynamic effects (Padmanbhan, 2010). In theories
involving energy flux or fields (non-mass sources), gravitational effects were described without
explicitly emphasizing mass as the sole source, instead focusing on energy -momentum distribu-
tions, which can include non-mass energy forms; frame - dragging and the Lense - Thirring effect
(Lense and Thirring, 1918) was introduced as the relation of the angular momentum/rotation
(which relates to angular frequency) and space-time topology and curvature. Lense and Thirring
(1918) formulated the weak-field and slow - motion description of the effect of frame dragging
of inertial frames around rotating masses on the orbit of a particle around the spinning body.
However, to our best knowledge there are no conclusive results yet on relevant experimental
evidences.
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