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UòÊ�
Tehnologijo umetne inteligence (UI) sestavljajo razna področja, med njimi 

metode za splošno reševanje problemov in preiskovanje problemskih prostorov, 
predstavitev znanja in metode sklepanja, strojno učenje, računalniško razumevanje 
naravnega jezika, roboƟ ka, računalniški vid itd. RelaƟ vna pomembnost teh področij 
se je s časom spreminjala. Od leta 2000 je strojno učenje postalo najpomembnejše 
in kaže najvidnejši napredek.

Ideje za strojno učenje so se pojavile že zgodaj. Prvi bolje znan prakƟ čno upo-
raben program strojnega učenja je bil ID3 (Quinlan 1979). Kmalu se je pokazalo, da 
so potenciali strojnega učenja za prakƟ čno uporabo izjemni. Dober zgodnji primer 
je pos kus (Bratko in Mulec 1980), ki je verjetno prva uporaba strojnega učenja v 
medicinski diagnosƟ ki. Zanimivo je, da so nekateri takrat najbolj znani znanstveniki iz 
UI, posebej ameriški, v obdobju pred 1990 zmotno ocenjevali, da je uporaba strojne-
ga učenja v zahtevnejših domenah preveč opƟ misƟ čna in ni realna. S tem so močno 
upočasnili uveljavljanje uporabe strojnega učenja po svetu. Tako je šele okrog leta 
2000 strojno učenje postalo najperspekƟ vnejše področje UI.

Vendar je popoln preobrat v vsesplošnem zanimanju za strojno učenje sledil 
šele po dodatnem tehničnem preboju globokega učenja z nevronskimi mrežami 
(LeCun, Bengio in Hinton 2015) in generaƟ vne UI po letu 2020 (npr. Bubeck et al. 
2023). GeneraƟ vna UI je posebna vrsta strojnega učenja. Pri klasičnem strojnem 
učenju gre Ɵ pično za učenje napovedovanja »razreda«, npr. v medicini za klasifi kacijo 
novega pacienta v diagnosƟ čne razrede ali napovedovanje temperature v vre menski 
napovedi. Pri generaƟ vni umetni inteligenci pa se sistem nauči generiraƟ  nove vse-
bine, npr. besedila ali slike. Tako lahko na primer v medicinski aplikaciji generira 
splošen besedilni opis razlik in podobnosƟ  med dvema boleznima.

Ta razvoj je v kratkem času omogočil ogromen napredek v vrsƟ  aplikacij UI. 
Znani primeri so: kakovostno strojno prevajanje, uporaba v zdravstvu, znanosƟ  (npr. 
pisanje znanstvenih člankov, oz. vsaj velika pomoč pri tem), izobraževanju, sijajni re-
zultaƟ , ki jih dosegajo veliki jezikovni modeli na specialisƟ čnih izpiƟ h iz medicine in 
prava, avtomatsko programiranje in odlični rezultaƟ  na tekmovanjih iz programiranja.

Vendar so se ob teh tehnoloških dosežkih v UI, še posebej ob pojavitvah velikih 
jezikovnih modelov, kot je ChatGPT, pojavila tudi relevantna vprašanja o tem, kje so 
meje zaupanja v to tehnologijo. Ob pojavitvi sistema GPT-4 leta 2023 je prišlo do 
velikega miselnega preobrata med nekaterimi najvidnejšimi strokovnjaki za UI. Ob 
uspehih generaƟ vne UI so še pred pojavitvijo GPT-4 Ɵ  eksperƟ  pogosto komenƟ rali 
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presenetljive uspehe npr. GPT-2 tako: »Da, zanimivo, toda ti sistemi nimajo pojma, o 
čem govorijo.« Kljub njihovi presenetljivi zmožnosƟ  je uporabnik takratne jezikovne 
modele z lahkoto z nekaj vprašanji spravil v težave, v katerih so gladko odpoveda-
li. Toda ko se je pojavil GPT-4, so isƟ  eksperƟ  zelo hitro spremenili mnenje iz »ne 
vedo, kaj govorijo«, v smeri: »Da, GPT-4 deluje presenetljivo dobro, tega nismo mogli 
pričakovaƟ .« Vendar ni jasno, zakaj deluje tako dobro, saj nihče ne ve dobro, kaj se 
v resnici dogaja v tej ogromni nevronski mreži s 1000 milijardami parametrov. Ko-
mentarji ekspertov so se hipoma spremenili. Zdaj ne vemo več, ali »ne ve, kaj dela«, 
ali mogoče vendarle »ve, kaj dela«. Tudi eden od najpomembnejših razvijalcev glo-
bokega učenja, Geoff rey Hinton, ki je leta 2024 za dosežke na tem področju prejel 
Nobelovo nagrado, deli zaskrbljenost glede dejstva, da tej tehnologiji zaupamo tudi 
izjemno pomembne aplikacije, obenem pa ne razumemo, na kakšen način doseže 
tako prepričljivo delovanje. A obenem dela tudi očitne napake, ki pa jih je zaradi 
našega nerazumevanja nemogoče predvideƟ .

Zato so ta razvoj spremljala vprašanja, ali je ta tehnologija varna in »vredna 
zaupanja« (»trustworthy AI«), kakšne so posledice za delovanje družbe. Nekateri 
razlogi za skrb so: nerazumljivost nekaterih sistemov UI, možnosƟ  manipulacije z ljud-
mi z metodami UI in s tem tudi vpliv na demokraƟ čne procese, vpliv na izobraževanje 
in tudi na cilje izobraževanja, večanje neenakosƟ , diskriminacija določenih skupin, 
npr. glede na raso ali spol. 

Hiter razvoj in eksplozija novih načinov uporabe UI močno vplivata na naš način 
dela in življenja. Zato so se v tej zvezi vse pogosteje pojavljala vprašanja o t. i. eƟ čnih 
vidikih UI. Te vidike je treba nasloviƟ , če želimo zagotoviƟ  UI, ki bo vredna zaupanja, 
njena uporaba pa varna in eƟ čna. 

V tem poglavju naredimo pregled eƟ čnih vidikov UI. Nato se osredinimo na 
podrobnejšo razpravo o dveh od najpogosteje omenjanih eƟ čnih vidikov: (1) pri-
stranskost UI in strojnega učenja in (2) transparentnost (razumljivost, razložljivost) 
sistemov UI ter sposobnost razlage.

Eã®�Ä® ò®�®»® çÃ�ãÄ� ®Äã�½®¦�Ä��
Razvoj umetne inteligence so spremljala tudi ugibanja o možnih nevarnosƟ h, ki 

bi se lahko pojavile ob razvoju te tehnologije. Zgodnje razmišljanje se je ukvarjalo z 
vprašanjem, ali lahko UI prevzame oblast. Razmišljanje je šlo npr. v smeri inteligent-
nih robotov, ki naj bi si nasilno podredili ljudi. To so bile v glavnem naivne predstave, 
ki niso imele dobre osnove v realnosƟ . Tak scenarij ni bil nikoli videƟ  verjeten, saj bi 
morebitno nevarnost nasilnih robotov ljudje z lahkoto zaznali in preprečili.

Druga vrsta vprašanj je bila povezana s predvidevanji o t. i. točki tehnološke 
singularnosƟ . To je trenutek, ko bi se pojavila superinteligenca, to je umetna inteli-
genca, ki bi presegla človeško (Kurzweil 2005). Predvidevanja o tem, kdaj bi naj se 
to zgodilo, so bila zelo nejasna že zato, ker v teh razpravah ni bilo dobro defi nirano, 
kdaj bomo šteli, da je UI presegla človeško inteligenco. Inteligenco sestavlja vrsta 
sposobnosƟ  (npr. pomnjenje, računanje, logično sklepanje, učenje, razumevanje in 
sporazumevanje v naravnem jeziku, sklepanje »po zdravi pameƟ «, kreaƟ vnost …). V 
nekaterih od teh komponent inteligence je UI že zdavnaj presegla sposobnosƟ  člove-
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ka, v nekaterih pa je bila vsaj do nedavna videƟ  še zelo daleč. Tudi ni bilo jasno, kaj bi 
bile konkretne nevarnosti, povezane s točko singularnosƟ . Zato med raziskovalci UI 
scenarij s singularnostjo ni bil deležen velike pozornosƟ . Bostromovo (2014) razmiš-
ljanje o možnih nevarnostih superinteligence je prepričljivejše. Gre v smeri t. i. eksis-
tenčne grožnje UI za obstoj človeštva. 

Konkretne podrobnosƟ  možnih nevarnosƟ , povezanih z UI, so bile dolgo zelo 
špekulaƟ vne. Zadeva se je spremenila, ko je UI dosegla velik prakƟ čen napredek. 
Takrat so postali nekateri vidiki možnih nevarnosƟ  konkretnejši in verjetnejši. Leta 
2015 je skupina raziskovalcev UI opozorila na te vidike z odprƟ m pismom (dostopno 
na spletni strani Future of Life InsƟ tute 2015), ki ga je podpisalo več kot enajst Ɵ soč 
strokovnjakov za UI. Glavno sporočilo pisma je bilo: UI je dosegla velik tehnični na-
predek, ki omogoča velike priložnosƟ , obenem pa je prišel čas, da smo pozorni in se 
izognemo možnim nevarnosƟ m. 

Besedna zveza »eƟ čni vidiki umetne inteligence« pomeni vprašanja, principe in 
metode v zvezi z zagotavljanjem varne in eƟ čne uporabe UI. Z eƟ čno uporabo misli-
mo na prakso uporabe UI, ki ni v nasprotju s splošno sprejeƟ mi vrednotami in načeli. 
Med temi se v okviru eƟ čne uporabe UI najpogosteje omenjajo naslednje lastnosƟ : 
pravičnost in nepristranskost (npr. glede na raso ali spol), transparentnost in razum-
ljivost, spoštovanje zasebnosƟ  (kot nasprotje nelegiƟ mnemu zbiranju osebnih podat-
kov in njihovi zlorabi), korektnost (verodostojnost) informacij kot nasprotje lažnim 
novicam (»fake news«) in zlonamerni manipulaciji z ljudmi (npr. v poliƟ čne namene). 
Angleške fraze, ki pomenijo bolj ali manj isto kot »eƟ čni vidiki UI«, so: »Ethical issues 
of AI, Ethics of AI, AI ethics«. S temi principi se ukvarja med drugimi tudi mednarodna 
organizacija Int. AssociaƟ on for Safe and Ethical AI (IASEAI), ustanovljena leta 2025.

V nadaljevanju tega razdelka so predstavljeni eƟ čni vidiki UI, ki so bili omenjeni 
v odprtem pismu iz leta 2015 ali so se izkristalizirali nekoliko pozneje. V naslednjih 
dveh razdelkih pa so nekateri od teh vidikov obdelani podrobneje.

Transparentnost in razložljivost sistemov UI, razlaga odločitev‚ 
problem črnih škatel
Načelo transparentnosƟ  in razložljivosƟ  pomeni, da naj bi imel uporabnik 

vpogled v delovanje sistema UI in da je sistem zmožen uporabniku razložiƟ  svoje 
odločitve v človeku razumljivi obliki. Ta princip je posebej bistven, kadar so pred-
lagane odločitve umetne inteligence za uporabnika pomembne, še posebej takrat, 
kadar obstaja možnost, da je sistem predlagal napačno odločitev (npr. v medicinski 
diagnosƟ ki).

Nekatere metode UI zlahka, že po osnovnem načinu delovanja, zadosƟ jo načelu 
razložljivosƟ . Primer je metoda za učenje odločitvenih dreves. Za odločitvena drevesa 
se navadno smatra, da so sama po sebi dobro razumljiva. Primer slabe razložljivo-
sƟ  pa je učenje z nevronskimi mrežami, še posebej globokimi mrežam, ki so nera-
zumljive že zaradi velikosƟ , navadno merjene s številom prilagodljivih parametrov 
v mreži. Odločitev nevronske mreže je rezultat skupnega delovanja velikega števila 
parametrov in je zelo težko, pogosto prakƟ čno nemogoče razložiƟ , kako so številne 
interakcije v mreži privedle do končne odločitve. Pri tem omenimo, da prav globoke 
nevronske mreže pogosto dosegajo največjo klasifi kacijsko točnost. Zato včasih pride 
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do neke vrste tehtanja med točnostjo in razložljivostjo, ko v strojnem učenju lahko 
dosežemo boljšo razložljivost, vendar na račun točnosƟ .

Zaradi potrebe po razložljivosƟ  je nastalo posebno področje UI, imenovano 
raz ložljiva UI (»explainable AI«, krajšano kot XAI). To področje se ukvarja z metoda-
mi, kako avtomatsko generiraƟ  človeku prijazno razlago odločitev sistema UI. Pose-
ben izziv je, kako generiraƟ  razlago odločitev v primerih, ko je postopek računanja 
odločitev zaradi kompleksnosƟ  nerazložljiv. Kot bo pojasnjeno v nadaljevanju, takrat 
pridejo v poštev metode, ki privedejo do enake odločitve, vendar na preprostejši 
način, ki omogoča vsaj približno razlago.

Pristranskost v strojnem učenju
Nekateri modeli UI, dobljeni kot rezultat strojnega učenja, so se v praksi izka-

zali kot pristranski, Ɵ pično glede na raso ali spol. Npr. sistem COMPAS (Angwin et al. 
2016), ki se uporablja v ameriškem pravosodju, vzbuja vƟ s, da je diskriminatoren do 
temnopolƟ h obtožencev. Za nekatere druge odločitvene sisteme je bilo ugotovljeno, 
da so diskriminatorni do žensk, npr. v zaposlovanju. To temo so preučevali v raznih 
raziskavah. Te kažejo zapletenost teh vprašanj. Razni smiselni formalni kriteriji za 
ugotavljanje pristranskosƟ  so med seboj nezdružljivi. Odločanje med možnimi načini 
za preprečevanje diskriminacije pa je pogosto stvar zapletene presoje. V razdelku o 
pristranskosƟ  v nadaljevanju podrobneje predstavimo nekatere ugotovitve in smeri 
teh diskusij.

Manipulacija z ljudmi z orodji UI 
Metode UI je možno učinkovito zlorabiƟ  za manipulacijo z ljudmi po družbenih 

medijih. Namen take manipulacije je lahko komercialen ali poliƟ čen, pri čemer lah-
ko na ta način pride do vplivanja na demokraƟ čne procese – manipulacije volitev 
in referendumov. Orodja UI omogočajo avtomatsko generiranje osebno prilagojenih 
tendencioznih vsebin ali dezinformacij in ciljano širjenje sporočil na tak način, da so 
doseženi čim večji učinki in spremembe mnenja pri ciljanih posameznikih. Poglavje v 
tej knjigi Košmrlj in Bratko (2025) se podrobneje ukvarja z vplivom generaƟ vne UI na 
demokraƟ čne procese. 

Zbiranje osebnih podatkov na spletu in njihova zloraba
AvtomaƟ zirana manipulacija z ljudmi po družbenih medijih in spletu je učinko-

vita ob uporabi osebnih podatkov o posameznikih ter njihovih lastnosƟ h in nagnjen-
jih. Zato ponudniki spletnih storitev nenehno zbirajo podatke o uporabnikih, tudi 
osebne, in jih uporabljajo za ciljano oglaševanje in širjenje tendencioznih vsebin ter 
si jih prodajajo med seboj. Evropska zakonodaja (GDPR) tako zbiranje podatkov sicer 
omejuje in ga dovoljuje ob soglasju uporabnika. Vendar zbiralci podatkov tako soglas-
je uporabnika prakƟ čno izsilijo, ne da bi bilo uporabniku res jasno, kako bodo podatki 
uporabljeni.

Globoki ponaredki
Na tehnologiji globokih nevronskih mrež temeljijo tudi programska orodja za 

generiranje globokih ponaredkov (»deep fake«) ponarejenih video in avdio vsebin. 
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Zaradi sposobnosƟ  za preprečljivo ponarejanje slike ali govora konkretnih znanih oseb 
so Ɵ  ponaredki prakƟ čno nerazpoznavni in omogočajo učinkovito širjenje neresnic po 
družbenih medijih. S tem dodatno povzročajo splošno informacijsko negotovost.

UI v avtonomnih orožjih
Avtonomna orožja samostojno, brez posredovanja človeškega operaterja, izbi-

rajo tarčo in se odločijo za napad. Pri tem je lahko odločitev napačna in usodna za 
nedolžne žrtve. Nekateri si razlagajo, da so s tem, ko je odločitev za napad sprejela 
UI, človeški operaterji razbremenjeni za odgovornost v primeru napake in nedolžnih 
žrtev. S tem se ob uporabi avtonomnih orožij standardi odgovornosƟ  zmanjšujejo in 
mnogi, vključno s številnimi strokovnjaki UI, zato menijo, da z uvajanjem avtonomnih 
orožij prihaja do še ene oboroževalne tekme. Prav zaradi domnevne manjše odgo-
vornosƟ  ljudi (in prenašanja odgovornosƟ  za nedolžne žrtve na umetno inteligenco) 
se zmanjšuje prag za odločitve držav za vojaške konfl ikte in posege. V tej smeri gredo 
tudi pričakovanja države agresorke, da bo uporaba avtonomnih orožij zmanjšala šte-
vilo lastnih žrtev vojne. S tem lahko odločitev za vstop v vojno postane preveč lahkot-
na. Ta bojazen je tudi glavno sporočilo odprtega pisma, ki je nastalo med konferenco 
IJCAI 2015 (Int. Joint Conf. on AI, tj. najpresƟ žnejša klasična vsakoletna konferenca iz 
UI). To pismo je zbralo več kot 34 Ɵ soč podpisov (Future of Life InsƟ tute 2015).

Avtomatsko razpoznavanje čustev
Strojno učenje je omogočilo tudi učenje razpoznavanja človekovih čustev iz iz-

raznih vzorcev na obrazu, ki se pojavljajo pri osebah ob določenih čustvenih stanjih. 
Ti vzorci omogočajo tudi razpoznavanje čustev, ki jih sicer oseba ne bi rada izdala. 
Posebej avtomatsko razpoznavanje prikriƟ h čustev je eƟ čno sporno, saj naj bi imel 
človek pravico, da sam odloča o tem, ali čustva pokaže ali ne.

PÙ®ÝãÙ�ÄÝ»ÊÝã ò çÃ�ãÄ® ®Äã�½®¦�Ä�®1

Pojav pristranskosƟ  v umetni inteligenci
Z naraščajočo uporabo strojnega učenja so se v zadnjih 5–10 leƟ h pojavili pri-

meri aplikacij, deležni izrazito odklonilnih odzivov tako s strani splošnih medijev kot 
znotraj strokovne literature. Pogosto so izpostavljeni sistemi, uporabljeni v domenah 
pravosodja, zaposlovanja in bančništva. KriƟ ki opozarjajo, da so algoritmi in sistemi 
strojnega učenja nepravični in pristranski glede na t. i. zaščitene atribute, kot so rasa, 
spol in starost posameznika. Trdijo, da odločitve umetne inteligence (UI) temeljijo 
na teh atribuƟ h namesto na objekƟ vni oceni dejstev (Hellström, Dignum in Bensch 
2020). Strokovnjaki z različnih področij obravnavajo t. i. problem pristranskosƟ  stroj-
nega učenja. Skušajo opredeliƟ , kaj pristranskost pomeni, od kod naj bi izhajala in, 
najpomembneje, kako jo ustrezno nasloviƟ .

Na razvijajočem se področju eƟ ke v UI (npr. UNESCO 2021) se vprašanje pri-
stranskosƟ  strojnega učenja uvršča med osrednje teme. PoliƟ ki ga pogosto omen-
jajo v povezavi z regulaƟ vnimi načeli, namenjenimi zagotavljanju eƟ čne in varne 

1  Vsebina razdelka o pristranskosƟ  UI je bila deloma objavljena v Farič in Bratko (2023). 
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uporabe UI, npr. ArƟ fi cial Intelligence Act (Evropski parlament 2024). Vendar pa v 
teh razpravah pogosto ni jasno opredeljeno, kaj pristranskost strojnega učenja in 
UI pravzaprav pomeni. Posledično regulaƟ vni ukrepi na tem področju ostajajo po-
manjkljivo defi nirani in zgolj na zelo abstraktni ravni. Izraz pristranskost v kontekstu 
strojnega učenja za različne avtorje pomeni različno. Celo v strokovni literaturi s po-
dročja UI ni popolnega soglasja in splošno sprejete tehnične defi nicije pristranskosƟ , 
ki bi omogočala operaƟ vno uporabo za njeno preprečevanje (Hellström, Dignum in 
Bensch 2020). Poleg tega je za razne smiselne defi nicije pristranskosƟ  matemaƟ č-
no dokazano, da jim, razen v posebej trivialnih primerih, ni mogoče zadosƟ Ɵ  hkraƟ  
(Hüllermeier, Fober in Mernberger 2013).

V nadaljevanju pregledamo različne defi nicije pristranskosƟ  in različna mnenja 
o tem, kako naj bi se tega problema v praksi najuspešneje loƟ li. Različna mnenja 
najprej ilustriramo z znanim kontroverznim primerom, s sistemom COMPAS. Zaključ-
ki nakazujejo, da je za ustrezno obravnavo nujno upoštevaƟ  družbene vrednote in 
jih z interdisciplinarnim sodelovanjem operacionaliziraƟ  z demokraƟ čno sprejeƟ m 
družbenim dogovorom v obliki ustrezne zakonodaje. K boljšemu splošnemu razume-
vanju pristranskosƟ  v UI v praksi bi prispevalo tudi izboljšanje splošne izobrazbe o UI 
in njenih metodah.

Primer: sistem COMPAS
Neenotnost na področju obravnave pristranskosƟ  bomo v nadaljevanju pokazali 

na primeru sistema COMPAS (Angwin et al. 2016; Dressel in Farid 2018; Flores, Bech-
tel in Lowenkamp 2016; Holsinger et al. 2018).  Sistem COMPAS je v številnih publi-
kacijah obravnavan kot verjetno najbolj kontroverzen primer, ki ponazarja domnevno 
pristranskost delovanja UI. COMPAS (»CorrecƟ onal Off ender Management Profi ling 
for AlternaƟ ve SancƟ ons«) je odločitveni sistem, ki ga na mnogih ameriških sodiščih 
uporabljajo sodniki za oceno tveganja povratništva. Sistem ocenjuje verjetnost, da bo 
obsojenec v dveh leƟ h po izpustu ponovno storil kaznivo dejanje. COMPAS je razvilo 
ameriško podjetje, takrat imenovano Northpointe (danes Equivant). Sistem upošteva 
137 atributov o posameznem prestopniku. Podatki so pridobljeni bodisi od obsojenca 
bodisi iz njegove kriminalne datoteke. Te podatke nato analizira poseben algoritem, 
ki kot poslovna skrivnost podjetja ni splošno znan. Na podlagi analize algoritem poda 
oceno med 1 in 10, pri čemer višja ocena pomeni višje tveganje za povratništvo. 

Razprava o sistemu COMPAS se je začela z odmevnim člankom v ProPublici (An-
gwin et al. 2016). Skupina preiskovalnih novinarjev je predstavila svojo analizo siste-
ma COMPAS in eksperimenƟ ranje z realnimi podatki o več kot 7000 obtožencih na 
Floridi v leƟ h 2012 in 2013. Ugotovili so, da je samo 61 odstotkov ljudi, ocenjenih kot 
verjetni povratniki, dejansko ponovilo kaznivo dejanje. V nadaljnji analizi so se osre-
dinili predvsem na rasni vidik in prišli do zaključka, da je sistem pristranski do temno-
polƟ h obtožencev. Spremljali so, koliko obtožencev, ocenjenih z visokim tveganjem za 
povratništvo, je bilo v naslednjih dveh leƟ h dejansko ponovno obsojenih. Zanimalo 
jih je, kako pogosto so se napovedi sistema COMPAS razlikovale od dejanskih izidov. 
Posebej sta zanimivi dve vrsƟ  napak: (1) napačen poziƟ vni primer, ko sistem napač-
no napove ponovitev prestopka, in (2) napačen negaƟ vni primer, ko sistem napačno 
napove, da obtoženec ne bo ponovil prestopka. Tovrstne napake v strojnem učenju 
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običajno merimo z meriloma FPR in FNR, ki sta defi nirani kot: (1) FPR (»false posi-
Ɵ ve rate«) je delež napačno klasifi ciranih primerov med primeri, ki so ocenjeni kot 
poziƟ vni, in (2) FNR (»false negaƟ ve rate«) je delež napačnih klasifi kacij med Ɵ sƟ mi 
primeri, ki so ocenjeni kot negaƟ vni. Zanimalo jih je, ali sta Ɵ  dve meri različni za 
belopolte in temnopolte obtožence. Dobljeni rezultaƟ  so v naslednji tabeli. RezultaƟ  
nakazujejo, da je COMPAS prijaznejši do belopolƟ h obsojencev: 

Belopolti Temnopolti

  FPR 23,5 % 44,9 %

  FNR 47,7 % 28,0 %

Te rezultate so Angwin et al. (2016) interpreƟ rali kot očitno pristranske do tem-
nopolƟ h obsojencev in zato ocenili uporabo sistema COMPAS kot neprimerno in 
diskriminatorno. Taki interpretaciji bi bilo težko nasprotovaƟ .

Dodaten problem, ki ga izpostavijo Angwin et al. (2016), je pomanjkanje trans-
parentnosƟ  pri odločanju sistema COMPAS, saj je algoritem zaščiten kot poslovna 
skrivnost. Poleg tega sistem COMPAS ne ponudi razlage za svoje napovedi. Zaradi 
pogoste ciƟ ranosƟ  tega članka je COMPAS postal najbolj znan primer pristranskosƟ  
v strojnem učenju – tako v strokovnih krogih na področju strojnega učenja kot tudi 
med širšo javnostjo brez strokovnega znanja o UI. Kljub temu se COMPAS še vedno 
uporablja.

Na članek v ProPublici (Angwin et al. 2016) je odgovorila skupina strokovnjakov 
iz ameriškega pravosodja z delom z zgovornim naslovom »False posiƟ ves, false nega-
Ɵ ves and false analysis: A rejoinder to Machine Bias …« (Flores, Bechtel in Lowen-
kamp 2016). V njem so opozorili na več spornih odločitev v analizi ProPublice, izvedli 
lastno eksperimentalno raziskavo in zaključili, da so trditve v ProPublici (Angwin et al. 
2016) napačne. Čeprav se ta kriƟ ka zdi upravičena, bi bila bolj prepričljiva, če bi avtor-
ji jasno pokazali, kje točno je prišlo do ključne napake v analizi ProPublice. Namesto 
tega so predstavili svoj eksperimentalni rezultat, ki naj bi dokazal, da so osumljenci 
obravnavani enakopravno, ne glede na raso. Do tega rezultata so prišli tako, da so 
analizirali ocene tveganja obsojencev na lestvici od 1 do 10, kot jih oceni COMPAS. Iz 
teh ocen so izračunali mero AUC (površina pod ROC-krivuljo), ki se v strojnem učenju 
tudi pogosto uporablja kot indikator uspešnosƟ  modela. Mera AUC je zanimiva zato, 
ker predstavlja verjetnost, da napovedni sistem pravilno loči med poziƟ vnimi in neg-
aƟ vnimi primeri. To pomeni, da če vzamemo naključna primera (obtoženca, izmed 
katerih je prvi ponovil kaznivo dejanje, drugi pa ne), bo sistem z verjetnostjo, enako 
vrednosƟ  AUC, pravilno določil, kateri je poziƟ ven in kateri negaƟ ven. Po navedbah 
Floresa, Bechtela in Lowenkampa (2016) je vrednost AUC za belopolte osebe znašala 
0,69, za temnopolte pa 0,70. Razlika med vrednostma ni staƟ sƟ čno značilna. Iz tega 
so sklepali, da COMPAS očitno ni rasno diskriminatoren in da rezultaƟ  ProPublice, 
ki kažejo na diskriminacijo, ne morejo biƟ  pravilni. Vendar tak posredni argument 
dopušča dvom, saj mere AUC ter FPR in FNR med seboj niso enoznačno povezane.

Dressel in Farid (2018) v svoji raziskavi poročata o relevantnem poskusu, v 
katerem sta raziskovala napovedno točnost naključno izbranih posameznikov brez 
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domenskega znanja in točnost preprostega linearnega klasifi katorja. Primerjala sta 
napovedno točnost sistema COMPAS z uspešnostjo omenjenega linearnega klasifi ka-
torja. Eksperiment z napovedovanjem človeških udeležencev (izveden z množiče-
njem, »crowd sourcing«) sta izvedla na podmnožici podatkov s Floride, ki je zajemala 
1000 od skupno 7000 obtožencev iz študij (Angwin et al. 2016; Flores, Bechtel in 
Lowenkamp 2016). Ker bi bila uporaba vseh 137 atributov iz izvorne zbirke podatkov 
za poskus s človeškimi udeleženci neprakƟ čna, sta izbrala zgolj sedem atributov. Ti 
niso vključevali rase. Presenetljivo je, da je bila napovedna točnost neekspertov v 
teh poskusih prakƟ čno enaka kot napovedna točnost sistema COMPAS. Zanimivo je 
tudi, da so bile človeške napovedi v tem poskusu podobno pristranske kot napovedi 
sistema COMPAS, merjeno z vrednostmi FPR in FNR za belopolte in temnopolte. Po-
leg tega so rezultaƟ  ostali skoraj nespremenjeni, tudi če so človeški ocenjevalci prejeli 
dodatne informacije o rasi. Avtorja sta prav tako ugotovila, da preprost linearni klasi-
fi kator doseže podobno napovedno točnost, pri čemer uporablja zgolj dva atributa. 
Poleg tega bolj sofi sƟ cirani klasifi katorji niso izboljšali niƟ  napovedne točnosƟ  niƟ  
pravičnosƟ .

V članku iz pravosodja so Holsinger et al. (2018) kriƟ zirali raziskavo Dresselove 
in Farida (2018), pri čemer so kriƟ ko utemeljili na naslednjih argumenƟ h. Udeleženci 
v raziskavi (Angwin et al. 2016) so bili rekruƟ rani na plaƞ ormi Amazon Mechanical 
Turk, kjer so za sodelovanje prejeli fi nančno nagrado. Oceno povratništva so poda-
jali na osnovi sedmih atributov: starost, spol, vrsta kaznivega dejanja, resnost kaz-
nivega dejanja, število obsodb v odrasli dobi, število obtožb za mladoletniška kazniva 
dejanja in število obtožb za mladoletniške prekrške. Vsi omenjeni atribuƟ  so znani 
kot pomembni dejavniki tveganja za povratništvo. Po mnenju avtorjev je zmanjšanje 
števila atributov pomembno olajšalo nalogo napovedovanja v primerjavi z izvorno 
nalogo, ki je vključevala vseh 137 atributov. Taka kriƟ ka je utemeljena, saj je znano, 
da je izbira ustreznih atributov v strojnem učenju lahko izjemno zahtevna. Poleg tega 
so udeleženci po podaji posamezne ocene prejeli povratno informacijo o pravilnosƟ  
odgovora in svoji povprečni natančnosƟ . TisƟ , ki so dosegli višjo stopnjo točnosƟ , 
so bili nagrajeni z nekoliko višjim plačilom. Tak eksperimentalni okvir pa se bistveno 
razlikuje od resničnega konteksta, pri čemer se odločevalci soočajo s kopico (pogosto 
nerelevantnih in pristranskih) informacij. Glede na vse te okoliščine so avtorji zaklju-
čili, da raziskava Dressela in Farida (2018) ni prispevala pomembnih novih spoznanj. 
Pokazala je zgolj, da lahko naključno izbrani ljudje na podlagi izbranih relevantnih 
dejavnikov in povratnih informacij bolje napovedujejo povratništvo kot strokovnjaki, 
ki delujejo v kompleksnem okolju resničnih primerov. Holsinger et al. (2018) pa niso 
pojasnili, zakaj si tudi strokovnjaki ne bi pomagali z že obstoječim znanjem o pomem-
bnih izbranih atribuƟ h. Tako bi si tudi strokovnjaki olajšali nalogo s poenostavitvijo 
kompleksne informacije v majhno število relevantnih dejavnikov. 

Neodvisno od teh rezultatov je Cynthia Rudin (2019) na podlagi strojnega učen-
ja sinteƟ zirala preprost in popolnoma razumljiv napovedni model, temelječ na po-
datkih s Floride (Angwin et al. 2016). Model sestoji iz pravil »if-then« (navedenih v 
nadaljevanju) in uporablja zgolj tri atribute: spol, starost in število prejšnjih kaznivih 
dejanj. V primerjavi s sistemom COMPAS so ta pravila trivialno razumljiva:
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 IF age between 18-20 and sex is male
     THEN predict arrest (within 2 years)
     ELSE IF age between 21-23 and 2-3 prior off enses
         THEN predict arrest
         ELSE IF more than three priors
  THEN predict arrest
  ELSE predict no arrest
Ta napovedni model dosega prakƟ čno enako točnost kot COMPAS. Ima pa tudi 

podobne mere FNR in FPR (po podatkih s Floride). Glede na to je tudi ta model, ki ga 
je iz učnih primerov generiral nedvomno nepristranski algoritem učenja, pristranski 
v enakem pogledu kot COMPAS. Podobne rezultate za FPR in FNR sta dobila tudi 
Dressel in Farid (2018) za učenje iz isƟ h podatkov z enostavno linearno regresijo. 
Zanimivo je, da te indikacije pristranskosƟ  ni nihče komenƟ ral, niƟ  Dressel in Farid 
(2018) niƟ  Rudin (2019) niƟ  v drugih člankih, ki preučujejo COMPAS.

Iz predstavljenih rezultatov je mogoče sklepaƟ , da je napovedovanje tvegan-
ja povratništva kljub obsežnim razpoložljivim informacijam o obtožencih izjemno 
zahtevno, saj boljše napovedne točnosƟ , kot kaže, ni mogoče doseči. Obenem se zdi, 
da je skoraj vse doseženo z dvema ali s tremi najbolj koristnimi atribuƟ  in da preosta-
lih več kot 130 atributov ne prispeva k izboljšanju napovedi. V skladu s tem nekateri 
avtorji (Angwin et al. 2016; Dressel in Farid 2018) zaključujejo, da uporaba strojne-
ga učenja v pravosodju nima obetavne prihodnosƟ . Tak zaključek pa je prenagel in 
preveč poenostavljen, na kar opozarja Spielkamp (2017). V številnih drugih aplikaci-
jah, kot je medicinska diagnosƟ ka, je strojno učenje v večini primerov že preseglo 
napovedno točnost strokovnjakov, kar so potrdili številni eksperimenƟ , npr. Cestnik, 
Kononenko in Bratko (1987). 

Različna mnenja o pristranskosƟ  in uporabnosƟ  sistema COMPAS kažejo na po-
manjkanje splošno sprejeƟ h operaƟ vnih defi nicij pristranskosƟ  in pravičnosƟ  v stroj-
nem učenju. Problem lepo ponazarja pogosto ciƟ rani članek (Mehrabi et al. 2021), 
ki preučuje številne relevantne defi nicije pristranskosƟ , vendar ne ponudi skupne 
sinteze, ki bi zmanjšala konceptualno kompleksnost in omogočila prakƟ čen pristop k 
problemu pristranskosƟ . Članek povzroči dodatno zmedo, ko hitro odpravi COMPAS 
kot očitno pristranski in neuporaben, pri čemer ne upošteva argumentov Floresa, 
Bechtela in Lowenkampa (2016).

Formalne defi nicije pravičnosƟ  in izzivi za implementacijo v praksi
V splošnih medijih se strojnemu učenju pogosto očita pristranskost bolj po 

občutku, brez natančne opredelitve matemaƟ čno preverljivih kriterijev, na podlagi 
katerih bi bilo pristranskost mogoče dokazaƟ . Izjave, kot sta: »Sistem se je v sod-
stvu izkazal kot pristranski do temnopoltnih obtožencev« (Angwin et al. 2016) ali 
»Sistem je pri ocenjevanju kandidatov za zaposlitev pristranski do žensk« (Blanzeisky 
in Cunningham 2021) uporabljajo splošne izraze, kot so »pristranskost algoritmov«, 
»pristranskost strojnega učenja«, »pristranskost umetne inteligence«. V mnogih pri-
merih so bile te izjave opremljene s preprosƟ mi, a pogosto preveč poenostavljenimi 
razlagami, na primer: »Sisteme strojnega učenja razvijajo skoraj izključno belopolƟ  
moški, zato …«
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Danes je jasno, da problem pristranskosƟ  ni tako trivialen. PreƟ rano poeno-
stavljene razlage so vse redkejše, prav tako pa postaja očitno, da izraz »pristranskost 
algoritmov« ni primeren, saj ustvarja napačen vƟ s, da algoritmi lahko imajo zle na-
mene in da ne delujejo na podlagi matemaƟ čnih in staƟ sƟ čnih principov (Hardt, Price 
in Srebro 2016). Glavni cilj metod strojnega učenja je vedno odkrivanje zakonitosƟ  
v realnem svetu na podlagi razpoložljivih podatkov. Težava nastane, če v realnem 
svetu že obstajajo pristranske prakse. Podatki, zbrani v takem okolju, odražajo pris-
transkost, ki jo algoritem za učenje zazna in reproducira. Če nato rezultate, dobljene 
iz pristranskih podatkov, znova uporabimo v realnem svetu, s tem reproduciramo in 
utrjujemo že obstoječo pristranskost (ibid.).

Kljub vsemu še vedno ni dovolj natančno defi nirano, kaj pristranskost pravza-
prav je. Pogosto gre za vƟ s pristranskosƟ , pri čemer se predsodki za ali proƟ  posa-
mezniku ali skupini kažejo na način, ki je zaznan kot nepravičen (Ntoutsi et al. 2020).

Poglejmo, v čem so težave pri defi niranju pristranskosƟ . Že na področju strojne-
ga učenja se termin »pristranskost« uporablja v raznih pomenih. Izraz se v strojnem 
učenju nanaša na več fenomenov (Hellström, Dignum in Bensch 2020):
• IndukƟ vna pristranskost: To je princip, po katerem se algoritem odloči za eno 

izmed številnih možnih hipotez, ki so vse na nek način utemeljene z učnimi po-
datki. Gre za nabor (eksplicitnih ali implicitnih) predpostavk algoritma, katerih 
cilj je posplošiƟ  niz opazovanj (učnih podatkov) v splošni model domene (Hül-
lermeier, Fober in Mernberger 2013). Ta vrsta pristranskosƟ  je nepogrešljiv me-
hanizem, ki omogoča strojno učenje, zato je v principu poziƟ vna komponenta, 
brez katere strojno učenje sploh ni mogoče. Primer take pristranskosƟ  je načelo 
Occamove britve, ki pravi: če imamo na voljo dve razlagi zbranih podatkov, ki 
obe enako dobro razložita podatke, je bolj smiselno izbraƟ  preprostejšo razlago 
(Gordon in Desjardins 1995; Hellström, Dignum in Bensch 2020; Ntoutsi et al. 
2020). Čeprav ima izraz pristranskost pogosto negaƟ ven prizvok, je indukƟ v-
na pristranskost poziƟ vna in celo nujna komponenta strojnega učenja, kar lepo 
razložijo Gordon in Desjardins (1995) in osnovni učbeniki UI.

• Pristranskost v učnih podatkih: Pristranskost, ki odraža obstoječe pristranskosƟ  
v ustaljenem odločanju na danem področju uporabe (npr. pristranskost stro-
kovnjakov v dejanski sodni praksi, iz katere so pridobljeni učni podatki) (Blan-
zeisky in Cunningham 2021; DasƟ n 2018). Alelyani (2021), poudarja, da je taka 
pristranskost pogosto posledica kogniƟ vne pristranskosƟ , ki je naravni fenomen 
človeškega mišljenja. Človeški možgani namreč fi ltrirajo ogromne količine in-
formacij in ohranjajo le Ɵ ste, ki so za nas relevantne. Ker so algoritmi učeni 
na podatkih, ki odražajo človeško vedenje, pogosto reproducirajo kogniƟ vno 
pristranskost, ki jo vsebujejo vhodni podatki. Avtorji to vrsto pristranskosƟ  poi-
menujejo različno: Blanzeisky in Cunningham (2021) jo označujeta kot negaƟ v-
no dediščino (»negaƟ ve legacy«), medtem ko jo Hellström, Dignum in Bensch 
(2020) imenujejo zgodovinska pristranskost (»historical bias«).

• Pristranskost, ki izhaja iz neprimernega postopka zbiranja podatkov oz. vzorčen-
ja (Hellström, Dignum in Bensch 2020): Ta vrsta pristranskosƟ  se pojavi, kadar 
je npr. za določeno skupino ljudi na voljo bistveno manj primerov kot za druge 



67ANA FARIČ IN IVAN BRATKO

skupine. V skladu z matemaƟ čno utemeljenimi staƟ sƟ čnimi in verjetnostnimi 
načeli lahko nekatere skupine, Ɵ pično manjšinske, izpadejo kot diskriminirane 
(včasih celo v poziƟ vnem smislu!) preprosto zato, ker metode za ocenjevanje 
verjetnosƟ  upravičeno ocenijo te verjetnosƟ  drugače, kadar je na voljo manj 
podatkov. Tako pristranskost Blanzeisky in Cunningham (2021) imenujeta pod-
cenjevanje (»underesƟ maƟ on«). Sun, Nasraoui in ShaŌ o (2020) opozarjajo na 
ključno vprašanje o izvoru učnih podatkov. Tradicionalno so se algoritmi pri 
učenju zanašali na zanesljive oznake, ki so jih določili strokovnjaki. Danes pa se 
mnogi algoritmi učijo iz podatkov, ki izvirajo iz širše družbe, pri čemer so oznake 
in vzorci pogosto pristranski.
Prej omenjeni viri pristranskosƟ  so razmeroma splošno sprejeƟ . Kljub temu 

ostaja izziv natančno defi niraƟ  kriterije, ki bi objekƟ vno določili, ali je dani sistem 
pristranski, ter omogočili tudi kvanƟ taƟ vno vrednotenje te pristranskosƟ . Obstajajo 
razne matemaƟ čne mere, ki se zdijo smiselne, vendar so med seboj neskladne. Posle-
dično za zdaj še ne obstaja preprosta in splošno sprejeta mera pristranskosƟ .

To kompleksnost dobro ponazarja izčrpni pregled različnih defi nicij pravičnos-
Ɵ  kot nasprotja pristranskosƟ  (Ntoutsi et al. 2020). Pravičnost lahko opredelimo na 
več načinov, na primer: »pravičnost na podlagi zavedanja« (»fairness through awa-
reness«), pri čemer algoritem velja za pravičnega, če za podobne posameznike poda 
podobne napovedi; enakost obravnave (»treatment equality«), pri čemer se zahte-
va enako razmerje med FNR in FPR v obeh skupinah glede na zaščiteni atribut (npr. 
raso); poštenost v relacijskih domenah (»fairness in relaƟ onal domains«), pri čemer 
poleg atributov posameznikov upoštevamo še družbene, organizacijske in druge po-
vezave med njimi.

Berk et al. (2021) ugotavljajo, da so različne formalne defi nicije pravičnosƟ  lah-
ko med seboj nekompaƟ bilne, kar vpliva na zanesljivost ocen tveganja in predlagane 
algoritmične rešitve. Avtorji ugotavljajo, da, razen v trivialnih primerih, ni mogoče 
hkraƟ  opƟ miziraƟ  točnosƟ  in pravičnosƟ  ter zadosƟ Ɵ  vsem vrstam pravičnosƟ  hkraƟ . 
Ta problem podrobneje preučijo Kleinberg, Mullainathan in Raghavan (2016). Defi -
nirajo tri osnovne in na videz očitne pogoje, ki jih mora sistem izpolnjevaƟ , če naj 
bo nepristranski (pravičen). Presenetljivo se izkaže, da Ɵ  trije pogoji ne morejo biƟ  
izpolnjeni hkraƟ , razen v posebnih, trivialnih primerih, ki pa so za prakso nezanimivi. 
Torej so že te tri osnovne zahteve skupaj neuresničljive. Te tri zahteve so:
1. Kalibracija ocen verjetnosƟ . Če algoritem idenƟ fi cira skupino oseb, za katero 

ocenjujejo, da imajo določeno verjetnost za pripadnost poziƟ vnemu razredu, 
mora ta delež dejansko pripadaƟ  poziƟ vnemu razredu. Enak pogoj mora biƟ  iz-
polnjen tudi za vse skupine oseb, ki se razlikujejo glede na zaščiteni atribut, kot 
je rasa ali spol. Ocene morajo odražaƟ  to, kar naj bi pomenile, in biƟ  neodvisne 
od skupine glede na zaščiteni atribut, v katero posameznik spada.

2. Ravnotežje poziƟ vnega razreda. Povprečje »ocen tveganja« (stopnja pripadnos-
Ɵ  poziƟ vnemu razredu) oseb poziƟ vnega razreda mora biƟ  enako za vse sku-
pine. V primeru sistema COMPAS bi to pomenilo, da bi morali imeƟ  belopolƟ  
in temnopolƟ  obsojenci, ki pripadajo poziƟ vnemu razredu, primerljive ocene 
tveganja.
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3. Ravnotežje negaƟ vnega razreda. To načelo dopolnjuje prejšnje načelo poziƟ v-
nega razreda in pomeni, da morajo biƟ  povprečne ocene stopnje pripadnosƟ  
negaƟ vnemu razredu za osebe v negaƟ vnem razredu enake za vse skupine.
Avtorji matemaƟ čno dokažejo, da so te tri zahteve, čeprav si prizadevajo za 

isƟ  cilj zmanjševanja pristranskosƟ , med seboj nekompaƟ bilne, razen v posebnih 
primerih. 

Kadar se pojavi pristranskost, se pojavi vprašanje, kako jo odpraviƟ . Obstaja 
več pristopov, izmed katerih sta najočitnejša (a) prepovedana uporaba »zaščitenih 
atributov« in (b) obratna diskriminacija. Tipična zaščitena atributa sta rasa in spol. 
Princip zaščitenih atributov pomeni, da algoritmu učenja prepovemo uporabo teh 
atributov pri odločanju o klasifi kaciji posameznega primera. Ta pristop pogosto ni 
učinkovit, saj algoritem učenja uspe rekonstruiraƟ  vrednosƟ  zaščitenih atributov na 
podlagi drugih, nezaščitenih atributov, ki korelirajo z zaščitenimi. Na podlagi podat-
kov o izobrazbi ali lokaciji prebivališča lahko na primer algoritem sklepa o rasi osebe 
(Hardt, Price in Srebro 2016).

Princip obratne diskriminacije temelji na tem, da deprivilegiranim skupinam 
namenoma damo določeno prednost, s čimer naj bi odpravili učinke diskriminacije. 
Čeprav je ta ukrep očitno dobronameren, v praksi uvaja novo obliko nepravičnosƟ , 
ki je za nekatere vprašljiva (Alelyani 2021). Taka nepravičnost (obratna diskriminaci-
ja) je sicer lahko upravičena, vendar ne z vidika pravičnosƟ , temveč z vidika »višjih« 
vrednot, kot so popravljanje zgodovinskih krivic in doseganje dolgoročne pravičnos-
Ɵ  na podlagi začasne nepravičnosƟ . Gre torej za strateško uresničevanje družbeno 
sprejeƟ h vrednot, ki pa v praksi zaradi zgodovinskih razlogov in vztrajnosƟ  zahteva-
jo daljše časovno obdobje za implementacijo. Ostaja težavno vprašanje, do kolikšne 
mere je obratna diskriminacija smiselna, kar bi moralo biƟ  določeno z demokraƟ čno 
sprejeƟ m družbenim konsenzom, formaliziranim z ustreznimi zakonskimi rešitvami 
za vsak specifi čen primer. 

V praksi se reševanja pristranskosƟ  loƟ mo znotraj treh faz strojnega učenja: 
1) predprocesna faza, v kateri povečamo vzorec manjšine za bolj uravnoteženo pred-
stavitev podatkov; 2) medprocesna faza, v kateri dodajamo omejitve, s katerimi 
kompenziramo za neenakomeren vzorec in 3) poprocesna faza, v kateri prilagajamo 
mejne vrednosƟ  odločitve, predvsem za manjšinske skupine (Blanzeisky in Cunnin-
gham 2021; Mehrabi et al. 2021; Ntoutsi et al. 2020). 

Pri razvoju metod in orodij je ključno, da se zavedamo potencialnih pasƟ  (Ale-
lyani 2021; Holsinger et al. 2018). Avtorji opozarjajo, da lahko nekatere rešitve nena-
merno vodijo v nove oblike nepravičnosƟ . Hüllermeier, Fober in Mernberger (2013) 
izpostavijo pogost stranski učinek, ko poseganje v učne podatke privede do izgube 
pomembnih povezav med atribuƟ  ali celo do poslabšanja delovanja modela, merje-
nega s kazalniki, kot sta točnost in ocena F1. Kot primarni vzrok pristranskosƟ  avtorji 
idenƟ fi cirajo predhodne odločitve, ki so generirale same učne podatke. Predlagajo 
takƟ ko Fair-SMOTE, ki omogoča zmanjšanje pristranskosƟ , obenem pa ohranja (ali 
celo izboljšuje) delovanje sistema. Ključni korak je mutacija podatkov, z enakomerno 
ekstrapolacijo za vse spremenljivke. Fair-SMOTE idenƟ fi cira neuravnoteženost po-
datkov in napačno označene podatkovne točke. Rezultat je generiranje bolj pošte-
nih rezultatov. Avtorji zavračajo pomisleke (Berk et al. 2021), da je cena poštenosƟ  
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poslabšanje delovanja sistema. Zaključijo, da je namesto slepe uporabe opƟ mizacij-
skih metod pomembneje upoštevaƟ  specifi čnosƟ  domene in to znanje uporabiƟ  za 
izboljšanje v pogledu pravičnosƟ . 

Zaključek
Pristranskost v nekaterih ključnih aplikacijah strojnega učenja je postala popu-

larna in kontroverzna tema. V razpravah je nejasnost, ki izvira iz dejstva, da večina 
ljudi razume pojem pravičnosƟ  in pristranskosƟ  intuiƟ vno. Pri tem pravičnost doživlja-
mo na različne načine in v podrobnosƟ h ni popolnega soglasja. Tako tudi ni soglasja o 
tem, kakšen naj bi bil jasen, matemaƟ čno formuliran kriterij, s katerim bi brez dvoma 
kvanƟ fi cirali pristranskost konkretnega sistema. Obstaja veliko kontroverznih vpra-
šanj in odprƟ h tem, v zvezi s katerimi ni strinjanja. Ni soglasja o izvoru pristranskosƟ , 
niƟ  o tem, katera orodja oz. metode so za soočanje s pristranskostjo najprimernejše.

Poštenost v strojnem učenju naj bi pomenila produkcijo odločitev, s kateri-
mi bi bila družba zadovoljna. Problem nastane, ker si v tem nismo enotni. Primer 
COMPAS ponazarja, kako nujna je zedinjenost. COMPAS so analizirali različni stro-
kovnjaki, katerih ugotovitve so si nasprotujoče. Nekateri pravijo, da je COMPAS pri-
stranski, medtem ko drugi menijo, da ni. Spielkamp (2017) verjame, da imajo prav 
vsi, saj vsakdo razume pravičnost na svoj način. Študija Kleinberga, Mullainathana 
in Raghavana (2016) je še posebej zanimiva, saj avtorji matemaƟ čno dokažejo, da so 
določene defi nicije pravičnosƟ  med seboj nezdružljive, čeprav se na prvi pogled vse 
zdijo enako pomembne in nujne.

Za kakovostno obravnavanje pristranskosƟ  so pomembni jasna opredelitev za-
želenih družbenih vrednot, upoštevanje zgodovinskega okvirja in resničnega stanja 
sveta ter tudi izobrazba o vsaj osnovnih principih strojnega učenja. Šele na temelju 
tega znanja lahko kakovostno arƟ kuliramo svoja pričakovanja. Potem se lahko odloči-
mo, kateri koncept pravičnosƟ  ustreza v specifi čnih konteksƟ h. CorbeƩ -Davies et al. 
(2018) menijo, da ima lahko v določenih konteksƟ h delovanje v skladu s popularnimi 
koncepcijami pravičnosƟ  brez globljega razumevanja domene celo nasprotne učin-
ke. Avtorji v kontekstu razvoja algoritmov predlagajo, da se namesto osredinjanja 
na aksiomatska razumevanja pravičnosƟ  raje osredinimo na njihove posledice, ki so 
močno odvisne od konteksta in domene.

V literaturi na splošno ni dobro predvideno, kako velik izziv bo v praksi reševan-
je problema pristranskosƟ . Pričakovanja glede vrednot bo treba namreč natančno 
opredeliƟ  z ustreznimi zakonodajnimi rešitvami, ali naj bo na primer zaradi zgodo-
vinskih krivic v konkretni aplikaciji realizirana obratna pristranskost in v kolikšni meri. 
Take formulacije bodo morale biƟ  bolj tehnične, kot je običajno v zakonih in drugih 
predpisih, saj bodo osnova za konkretno implementacijo v algoritmih UI. Jasno je, da 
problem pristranskosƟ  ni (zgolj) tehnološke narave in da morajo zato učinkoviƟ  pris-
topi k reševanju problema vključevaƟ  tudi širši nabor ukrepov (Ntoutsi et al. 2020). 
PrizadevaƟ  si moramo za interdisciplinarno raziskovanje, pri katerem bodo inženirji 
na področju UI tesno sodelovali s strokovnjaki s področij eƟ ke in odločanja (Yu et al. 
2018).

Za ustrezno razumevanje in ukrepanje na tem področju je ključna kakovostna 
splošna izobrazba. Pomanjkanje se namreč kaže v načinu poročanja, odzivanju jav-
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nosƟ  in zmedenosƟ  strokovnjakov. Različni algoritmi postajajo neizogiben del vsak-
danjosƟ . Nesprejemljivo je, da o njih ne samo, da vemo premalo, ampak imamo celo 
napačne predstave. Po drugi strani imamo  tudi insƟ tucije, ki delovanja sistemov UI 
prav tako ne razumejo, hkraƟ  take sisteme naročajo in jih nato uvajajo v svoje proce-
se odločanja. InsƟ tucije pogosto nimajo dovolj znanja in virov, da bi znale specifi ciraƟ  
primerna algoritmična orodja. Nujno je izobraziƟ  ljudi, da bodo sposobni ustrezno 
arƟ kuliraƟ , kaj naj bi algoritem res meril in kateri kriteriji morajo biƟ  izpolnjeni, da bo 
algoritem pravičen (Courtland 2018).

R�þ½ÊĀ½¹®òÊÝã ò çÃ�ãÄ® ®Äã�½®¦�Ä�®
Problem razložljivosƟ  v umetni inteligenci
Uspehi in uporabnost tehnologije strojnega učenja so privedli do splošne upo-

rabe te tehnologije. Sistem se iz danih primerov nauči dajaƟ  napovedi in odločitve, ki 
so Ɵ pično kakovostne glede na točnost, vendar ne tudi vedno povsem zanesljive. V 
nekaterih primerih uporabe, kot je npr. zdravstvo, imajo lahko napačne odločitve zelo 
pomembne ali celo usodne posledice. 

Na takih področjih uporabe ni pomembna le točna napoved sistema in je nujno, 
da uporabnik lahko razume in preveri odločitve UI (Barredo Arrieta et al. 2019). Za 
to je pomembno, da ima model strojnega učenja zmožnost razlage, kako je prišel do 
odločitve. Nekatere metode strojnega učenja brez težav tako razlago tudi res omo-
gočajo. Nekatere druge metode, npr. posebej zmogljive nevronske mreže in globoko 
učenje (LeCun, Bengio in Hinton 2015), pa slovijo po nerazumljivosƟ . Napovedi, ki jo 
take metode dajejo, so Ɵ pično rezultat interakcij med ogromnim številom numerič-
nih parametrov (reda bilijon), kar daleč presega človekove sposobnosƟ  razumevanja. 
Znan je t. i. problem črnih škatel (»black box problem«), ki pomeni, da delovanje mo-
delov strojnega učenja ostaja za uporabnike nerazumljivo. Prav pomanjkanje razu-
mevanja omejuje nadaljnjo in bolj prakƟ čno uporabo modelov v mnogih pomembnih 
domenah odločanja. 

Potreba po razlagi je vodila v razvoj tehnik in pristopov t. i. razložljive umetne in-
teligence (XAI – »eXplainable ArƟ fi cial Intelligence«), ki se posveča nalogi razlaganja 
kompleksnih modelov strojnega učenja. Nove učinkovite metode razlage so posebej 
pomembne na področju nevronskih mrež in globokega učenja. Vendar je treba ugo-
toviƟ , da je tehnologija globokega učenja prešla v splošno uporabo, še preden je bil 
razvit kakovosten konceptualni okvir, ki bi omogočal jasno razumevanje delovanja in 
odločitev globokih nevronskih mrež. 

V nadaljevanju tega poglavja sledita pregled trenutnega stanja metod XAI in 
analiza pomanjkljivosƟ . 

Kaj sploh je razlaga?
Razložljivost je izmuzljiv pojem ne samo na področju umetne inteligence (UI), 

pač pa širše na področju fi lozofi je in drugih družboslovnih znanosƟ . Na področju UI 
se operira s koncepƟ , kot so vzročnost, informaƟ vnost, razumevanje, gotovost, za-
upanje, transparentnost ipd. (Barredo Arrieta et al. 2019). Termin »razložljiva umet-
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na inteligenca« je leta 2019 kot del svojega programa uporabila DARPA (Gunning et 
al. 2021). Od takrat je postal zelo popularen, ne gre pa za nov pojav. Kvečjemu gre za 
novo imenovanje dolgoletnih prizadevanj, med katerimi se raziskovalci trudijo prebiƟ  
do odgovora na vprašanje, zakaj je sistem prišel do določene napovedi (Holzinger et 
al. 2022). Prvi je verjetno opozoril na problem razložljivosƟ  Donald Michie, in to že 
precej prej, kot je to formuliral v svoji objavi (Michie 1988).

Najsplošneje bi lahko razložljivost v UI opredelili kot razlago, zaradi katere je 
delovanje modela razumljivejše. Seveda je to zelo splošna opredelitev, v poskusih 
natančnejšega defi niranja pa si raziskovalci niso enotni. Barredo Arrieta et al. (2019) 
navajajo, da mora model nudiƟ  razlago za svoje delovanje in napovedi v obliki vizua-
lizacije pravil in vpogleda v spremenljivke, ki bi lahko povzročile perturbacije modela. 
Ribeiro, Singh in Guestrin (2016) besedo “razložiƟ ”opredeljujejo kot predstaviƟ  be-
sedilne ali vizualne elemente, ki omogočajo kvalitaƟ vno razumevanje odnosa med 
komponentami in napovedjo modela.

Ena od nekonsistentnosƟ  v literaturi iz XAI je uporaba pojma interpretabilnost, 
ki je včasih sinonim razložljivosƟ , drugič ločen pojem, tretjič ena od kategorij razlož-
ljivosƟ . Barredo Arrieta et al. (2019) interpretabilnost razumejo kot pasivno, razložlji-
vost pa kot akƟ vno lastnost modela. Interpretabilni so modeli, ki so razumljivi že sami 
po sebi (npr. odločitvena drevesa), razložljivi pa Ɵ sƟ , za katere obstajajo metode, ki 
generirajo ustrezno razlago. 

Očitno je pomanjkanje konsenza o glavnih koncepƟ h. Problem je, da vsaka de-
fi nicija nastopa znotraj specifi čnega konteksta, odvisnega od naloge, sposobnosƟ  in 
pričakovanj raziskovalca. Opredelitve razložljivosƟ  so tako pogosto vezane na speci-
fi čno domeno. Posledično področje XAI še ni enotno glede defi nicije razlage, speci-
fi čnih ciljev in kriterijev, ki naj bi jim zadostovali modeli, da bi bili razumljivi (ibid.). 

Metode razlag
Obstajajo številne metode razlag. Problem pa nastane pri njihovi klasifi kaciji, 

ker ima prakƟ čno vsak avtor specifi čno defi nicijo razložljivosƟ , iz katere izhaja. 
Ena splošnih kategorizacij je delitev na lokalne in globalne razlage. Lokalne so 

razlage, središčene okoli posameznega primera, pri čemer pa ostane delovanje mo-
dela kot celote nepojasnjeno. Na drugi strani globalne razlage omogočajo razumeƟ  
celoten model, so pa pogosto osnovane na približnih vrednosƟ h (Alvarez-Melis in 
Jaakkola 2018; Hall, AmbaƟ  in Phan 2017; IgnaƟ ev, Narodytska in Marques-Silva 
2019; Yeh in Ravikumar 2021). 

Druga splošna delitev je na modelno odvisne in modelno neodvisne (»agnos-
Ɵ čne razlage«, »model-agnosƟ c«) razlage. Slednje s tehnikami, kot so relevantnost 
atributov, vizualizacija in poenostavitev, pridobijo določene informacije o postopku 
napovedovanja in so uporabne za vsako vrsto modela (Barredo Arrieta et al. 2019). 
Modelno odvisne razlage so uporabne zgolj za specifi čne vrste modelov (npr. maksi-
mizacija akƟ vacije nevronov, ki jo opišejo Guidoƫ   et al. (2018)) (Hall, AmbaƟ  in Phan 
2017). 

Barredo Arrieta et al. (2019) ločijo besedilne, vizualne, lokalne razlage, razlage 
s primeri, poenostavitvijo in z relevantnostjo atributov. Chen et al. (2022) opredelijo 
tri glavne kategorije razlag: osnovane na funkciji, na primerih in pojasnjevanju atri-
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butov. Yeh in Ravikumar (2021) ločita razlage atributov in razlage primerov. Ali et al. 
(2023) razlage razdelijo glede na uporabljeno metodologijo in ločijo med razlagami, 
ki slonijo na vzvratnem razširjanju (»backpropagaƟ on«), in razlagami s perturbacija-
mi. Guidoƫ   et al. (2018) ločijo: 1) odločitvena drevesa; 2) razlage, osnovane na pra-
vilih; 3) razlage pomembnosƟ  atributov, ki predstavijo težo in pomembnost atributov, 
ki jih je pri svoji napovedi upošteval model. Primer je znana metoda LIME (»Local 
Interpretable Model-agnosƟ c ExplanaƟ on«), primerna predvsem za razlago klasifi -
kacije besedil in slik (Ribeiro, Singh in Guestrin 2016); 4) zemljevidi pomembnosƟ , 
ki izpostavijo ključne vidike predmeta, ki je analiziran. Primer je metoda CAM (npr., 
da gre za sliko z umivanjem zob, razložimo tako, da posebej poudarimo dele slik, na 
katerih se zobna ščetka približa ustom) (Zhou et al. 2016); 5) PDP (»ParƟ al Dependen-
ce Plot«), pri čemer grafi čno prikažemo odnos med odločitvijo modela in vhodnimi 
podatki; 6) razlaga s protoƟ pi, pri kateri z napovedjo dobimo primer, podoben naše-
mu; 7) maksimizacija akƟ vacije, pri kateri opazujemo, kakšni vzorci vhodnih podatkov 
maksimizirajo akƟ vacijo določenega nevrona oz. nivoja. 

IgnaƟ ev, Narodytska in Marques-Silva (2019)  predstavijo pojem formalne 
razložljivosƟ , zasnovan na logiki, pri čemer so razlage posledično zanesljivejše in glo-
balno veljavne. Pristop temelji na računanju t. i. glavnih implikantov (»prime impli-
cant«), kar omogoča kompaktno logično predstavitev delovanja modela. 

Razni kriteriji dobre razlage
Če je eden od ključnih ciljev XAI izboljšanje zaupanja v sisteme UI, je nujno, da 

se pozornost usmeri k uporabnikom teh sistemov (Zhang et al. 2021). Dobre razlage 
bodo Ɵ ste, ki bodo upoštevale, komu so namenjene (Barredo Arrieta et al. 2019). To 
pomeni upoštevanje predznanja, ki ga imajo uporabniki. Opazen je trend, da razvijal-
ci metod razlag tega ne upoštevajo dovolj. Ribera in Lapedriza (2019) opredelita tri 
skupine uporabnikov (razvijalci in raziskovalci, eksperƟ  in laiki), ki zahtevajo različne 
vrste razlag.

Raziskovalci predlagajo različne kriterije za dobro razlago. V nadaljevanju nava-
jamo nekaj primerov kriterijev. 

Alvarez-Melis in Jaakkola (2018) opredelita tri kriterije:
• eksplicitnost: razlaga je takojšnja in razumljiva;
• t. i. zvestoba (»faithfulness«): ocene relevantnosƟ  odražajo resnično po memb-

nost;
• stabilnost: za podobne vhodne podatke veljajo podobne razlage.

Chen et al. (2022) poudarjajo:
• robustnost oz. občutljivost: ustrezna sprememba razlage v primeru spremembe 

vhodnih podatkov;
• zvestoba: razlaga ponazarja dejansko odločanje modela;
• kompleksnost: kogniƟ vni napor za razumevanje razlage;
• homogenost: zmožnost za pravilno razlago delovanja modela glede na različne 

skupine (v praksi se to po navadi nanaša na skupine, ki se razlikujejo glede na 
občutljive, zaščitene atribute).
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Amgoud in Ben-Naim (2022) opredelita šƟ ri aksiome, ki naj bi jim zadosƟ le 
dobre razlage:
1. morajo biƟ  informaƟ vne;
2. ne smejo vsebovaƟ  nepotrebnih informacij;
3. razlage razredov morajo pojasniƟ  posamezne primere, hkraƟ  pa morajo biƟ  

splošno uporabne;
4. razlaga mora vsebovaƟ  samo informacije, ki vplivajo na napoved.

Ocenjevanje razlag
Ocenjevanje razlag je najmlajše področje s široko paleto pristopov (Ribera in 

Lapedriza 2019). Za razliko od točnosƟ  je kriterije, kot so varnost, pristranskost in 
razložljivost, težje kvanƟ fi ciraƟ  (Doshi-Velez in Kim 2017).

Ocenjevanja se (najsplošneje) lahko loƟ mo na dva načina: 1) s človeškim ocen-
jevanjem ali 2) z uporabo računskih metod, ki merijo, kako dobro razlaga dejansko 
razloži delovanje modela. Glavna razlika med pristopoma je, da so računske metode 
objekƟ vnejše, vendar pa upoštevajo človeški faktor le posredno. Drugače rečeno, ne 
kvanƟ fi cirajo nujno človeškega razumevanja. PrednosƟ  človeške ocene sta subjekƟ v-
nost in večja deskripƟ vnost. Očitni pomanjkljivosƟ  sta manjša ponovljivost in večja 
odvisnost od specifi čne naloge (Mohseni, Block in Ragan 2021). 

Hsieh et al. (2021) in Zhang et al. (2021) predstavijo matemaƟ čno ocenjevan-
je razlag na podlagi analize robustnosƟ . MatemaƟ čno opredeljena mera nezvestobe 
ponazarja, kako dobro se razlaga ujema z modelom (Yeh in Ravikumar 2021).

Edmonds et al. (2019) so izvedli eksperiment, s katerim so preverili, kakšne 
razlage so pri ljudeh vzbudile največje zaupanje v robota, ki je odprl stekleničko. 
Robot se je naučil odpiraƟ  stekleničke iz človeških demonstracij, pri čemer je bilo 
ključno učenje zaporedij položaja rok in potrebne sile. Z rokavico s senzorji so zajeli 
podatke o sili in položaju rok v 64 človeških demonstracijah s tremi različnimi stekle-
ničkami. Sledilo je kompleksnejše učenje, da bi bil robot svoje znanje zmožen posplo-
šiƟ . ImplemenƟ ran je bil hapƟ čni model, ki je robotu pomagal določiƟ  potrebno silo, 
čeprav nima človeških rok. Ker odpiranje stekleničke poteka v več korakih (poƟ skanje, 
odvijanje itd.), je bil uporabljen tudi algoritem simboličnega planiranja, ki upošteva 
pravila o zaporedju potrebnih akcij, ki omogočajo druga drugo. S kombinacijo takega 
učenja je robot postal precej dober v odpiranju novih stekleničk. Udeleženci so bili 
razdeljeni v pet skupin. Vsaka je videla posnetek robota, ki opravlja nalogo, ter eno od 
možnih razlag: 1) simbolično: v realnem času so udeleženci videli z eno besedo opi-
sano akcijo, ki naj bi razlagala, kaj robot na posnetku dela (npr. »approach – grasp – 
push – twist – ungrasp – move – grasp – push …«); 2) besedilno: po ogledu posnetka 
robota so udeleženci prebrali kratko besedilo o tem, kako je robot opravil nalogo (npr. 
»I succeeded to open the boƩ le because I pushed on the cap three Ɵ mes and twisted 
the cap twice«); oz. 3) hapƟ čno razlago: vizualizacija sile prijema v vsakem trenutku 
odpiranja stekleničke oz. kombinacijo hapƟ čne in simbolične razlage. Največ zaupan-
ja je spodbudila simbolična razlaga. Ta rezultat nakazuje, da so principi simboličnega 
planiranja koristni za razlago robotskega delovanja, tudi če niso nujni za planiranje 
rešitve naloge.
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Mohseni, Block in Ragan (2021) so izvedli eksperiment, med katerim so ude-
leženci označili relevantna področja slike, ki so po njihovem mnenju bila najbolj re-
prezentaƟ vna za določen razred objektov (npr. mačka in pes). Rezultat je zemljevid 
pomembnosƟ , ki prikazuje območja slike, ki so jim udeleženci posvečali največ po-
zornosƟ . Te rezultate so primerjali z zemljevidi pomembnosƟ  metode Grad-CAM. 
Zemljevidi so si podobni, vseeno pa je staƟ sƟ čno tesƟ ranje pokazalo pomembne raz-
like. Distribucija relevantnih atributov je bila pri metodi Grad-CAM bolj uniformna. 
Udeleženci so v primeru živih biƟ j kot ključne pogosteje označevali obraze. Prav to so 
ugotovitve, ki so lahko v oporo pri razumevanju, kako dobre so razlage.

Nekatera odprta vprašanja
V tem razdelku opozorimo na nekatere razmeroma manj raziskane probleme in 

tudi na manj uporabljene pristope za XAI.

Tehtanje med točnostjo in razložljivostjo
Rudin (2019) v članku z zgovornim naslovom »Stop explaining black box ML 

models for high stakes decisions and use interpretable models instead« izraža deter-
minirano stališče. Zavzema se za uporabo metod učenja, ki dajejo naučene modele, ki 
so sami po sebi razumljivi. Za take veljajo npr. odločitvena drevesa. Nasprotuje meto-
dam učenja, katerih rezultaƟ  so v principu težko razumljivi. Med te štejemo posebno 
metode globokega učenja, ki sicer dosegajo visoko napovedno točnost v primerjavi 
z drugimi metodami učenja, toda ne zastonj: vsaj za ceno razumljivosƟ  in potreb-
nega velikega števila podatkov za učenje. Pri tem gre Rudin morda res predaleč z 
opƟ misƟ čnim stališčem, ki implicitno predpostavlja možnost izgradnje elegantnih in 
razumljivih modelov za vsako problemsko domeno, s čimer zadene ob princip kom-
pleksnosƟ  Kolmogorova (Kolmogorov 1963).

Glede možnosƟ  obstoja enostavnih modelov in razlag velja vsaj ena teoreƟ č-
na omejitev, ki jo defi nira kompleksnost Kolmogorova, ki določa, koliko spominskega 
prostora potrebujemo za najkrajši možni zapis danega objekta v računalniku. Ob-
stajajo zapleteni objekƟ  (torej tudi zapleteni napovedni modeli), ki jih niƟ  teoreƟ čno 
ni mogoče predstaviƟ  na kratek način. V takih primerih tudi razlaga ne more biƟ  krat-
ka in preprosta. Res pa je, da smo v praksi še zelo daleč od te teoreƟ čno dosegljive 
meje, torej imamo veliko prostora za izboljšanje. Ko zadenemo ob zid Kolmogorova, 
pa je še vedno možen kompromis, da za boljšo razložljivost žrtvujemo nekaj točnosƟ  
(Bratko 1997). Primer tehnične izvedbe tega tehtanja med točnostjo in razumljivostjo 
v učenju odločitvenih dreves sta razvila Bohanec in Bratko (1994). 

Navezava razlage na uporabnikovo predznanje
Ali bo razlaga dobra, je odvisno od uporabnika razlage, konkretno od uporabni-

kovega predznanja o problemski domeni. Če je to kakovostno, zadošča en namig. Če 
je razumevanje domene slabo, mora biƟ  razlaga podrobna in daljša. Tudi formulacija 
razlage je odvisna od obstoječega znanja na obravnavanem področju. Celo povsem 
pravilna in jedrnata razlaga je za eksperta na področju uporabe lahko nesprejemljiva 
in nenaravna. Kot primer omenimo, da so se nekateri primeri razlag, ki jih generirajo 
naučeni modeli v medicinskih domenah, kljub diagnosƟ čni točnosƟ  zdravniku zdeli 
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povsem nenaravni (Bratko 1997). V enem od primerov je sistem razložil, da gre za 
vnetni revmaƟ zem, ker ima pacient med drugim več kot dva prizadeta sklepa na roki. 
To diagnosƟ čno pravilo je dejansko točno. Vendar pa je zdravnik vztrajal, da mora 
imeƟ  pacient prizadete sklepe na vseh peƟ h prsƟ h na roki, ker vnetni revmaƟ zem 
Ɵ pično vpliva na vse sklepe. Ekspertno mnenje je bilo v tem primeru zelo jasno, če-
prav je res, da bo pravilo vodilo do pravilne diagnoze v vsakem primeru, če je število 
vneƟ h sklepov karkoli med 2 in 5. Ustreznost razlage je odvisna ne le od klasifi kacijske 
točnosƟ , temveč (tudi) od predznanja, ki ga ima uporabnik o tej obliki revmaƟ zma.

Obstoječe metode razlage ta vidik povečini ignorirajo. Problem je tudi v tem, da 
ne omogočajo naravne uporabe predznanja. V tem pogledu je zelo obetaven pristop 
k strojnemu učenju t. i. indukƟ vno logično programiranje (ILP), ki temelji na uporabi 
matemaƟ čne logike. Že osnovna formulacija problema učenja v ILP vsebuje upora-
bo predznanja: dani so učni primeri E in predznanje BK (»background knowledge«), 
naloga učenja pa je sestaviƟ  logično formulo H (hipoteza) tako, da primeri E logično 
sledijo iz BK in H.

Pristop ILP je skromno zastopan v obstoječih raziskavah iz strojnega učenja in 
razložljivosƟ . Lep primer njegove ustreznosƟ  so raziskave, ki jih opisujejo Ai et al. 
(2023) in Muggleton et al. (2018). Te zasledujejo ne le osnovni cilj XAI (razlage od-
ločitev strojnega učenja), temveč tudi cilj t. i. »ultrarazložljivosƟ «. Ta strožji kriterij 
strojnega učenja je definiral Michie (1988) (»ultra strong criterion for ML«). Strojno 
učenje je ultrarazložljivo, če je ne le razložljivo, temveč uporabniku omogoča tudi 
operaƟ vno uporabo za lastno reševanje novih problemov, npr. da strojno naučeno 
znanje lahko uporabi za lastno reševanje določenih matemaƟ čnih problemov ali 
igranje šaha.

Razlaga zaporedij odločitev v planiranju
Večina metod XAI generira razlago posameznih odločitev oz. klasifi kacij. Pri 

razložljivem planiranju pa gre za razlago množice odločitev (npr. zaporedja akcij, ki 
robota vodi do cilja). Posebej za razlago planov se je formiralo področje razložljivega 
planiranja (ChakraborƟ , Sreedharan in KambhampaƟ  2020).

Razlaga planov je običajno zahtevnejša od razlage v klasifi kacijskih problemih. 
Treba je razložiƟ , kako so posamezne akcije odvisne od drugih, da skupaj rešijo nalo-
go. Primer razlage zaporedja odločitev je razlaga šahovskih parƟ j, pri čemer je treba 
razložiƟ  celo zaporedje potez ali drevo odločitev, ki defi nira uspešno strategijo. Pri-
mer opisuje Bratko (2018) in vsebuje težko razumljive in briljantne poteze šahovske-
ga programa AlphaZero.

Razlaga planov je aktualna tudi na področju vodenja sistemov. Lep primer razla-
ge naučenega plana vodenja podajata Šoberl in Bratko (2023, 2025). Gre za klasič-
no nalogo iz teorije vodenja sistemov: vodenje sistema voziček-palica. Na vozičku 
je vrtljivo vpeta palica. Palica je postavljena približno verƟ kalno, vendar se, če ne 
ukrepamo, prevrne na tla. S poƟ skanjem vozička levo oz. desno je treba loviƟ  rav-
notežni položaj palice okrog verƟ kale, obenem pa doseči, da se voziček horizontalno 
premakne iz začetnega položaja do danega cilja. Naučena strategija vodenja je lepo 
razložljiva. Najprej nekoliko presenetljivo poƟ snemo voziček v nasprotno stran od cil-
ja, s čimer dosežemo, da se palica nagne proƟ  cilju. To omogoči pospeševanje vozička 
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v smer proƟ  cilju, hkraƟ  pa se ohranja ravnotežje palice, ko je ta nagnjena naprej v 
smeri cilja.

Zaključek
Področje XAI se je v zadnjih peƟ h do deseƟ h leƟ h močno razraslo. Mnogi zato 

predpostavljajo, da je bil to tudi začetek področja. V resnici je zavedanje pomemb-
nosƟ , da naj bi bilo strojno učenje razložljivo, obstajalo že pred 40 leƟ  (npr. Michie 
1988). Že takrat so obstajale raziskave o razložljivih modelih. Kljub sedanji količini 
raziskav in nedvoumnih uspehih se še vedno kaže, da pogrešamo nekatere ključne 
odgovore. Npr., že pred desetletji se je v sklopu isƟ h prizadevanj pojavilo zavedanje, 
da potrebujemo formalne mere za ocenjevanje kakovosƟ  razlag. Take sprejete mere 
še ni. Raziskovalci pri ocenjevanju razlag uberejo različne pristope, odvisne od raznih 
kriterijev (konteksta, domene, uporabnikov itd.). 

Glede vprašanja, kaj je sprejemljiva razlaga, se v pomanjkanju splošnejših in 
principialnih kriterijev v sedanji praksi uporablja predpostavka, da so nekateri modeli 
razložljivi kar po defi niciji, torej razložljivi sami po sebi. Mednje npr. navadno štejemo 
odločitvena drevesa ali pravila če-potem. Toda tudi ta kriterij je arbitraren. Kaj, če je 
odločitveno drevo zelo veliko, npr. da ima milijon vozlišč?

V tem razdelku smo opozorili tudi na počasen napredek pri razvoju metod za 
razlago zaporedij odločitev. Sem sodi razlaga planov za reševanje nalog, ki imajo 
ekspli   citno defi nirane cilje. Plan je lahko zaporedje akcij ali pa tudi množica akcij, ki 
so delno urejene v času. Tu je treba razložiƟ  tudi to, kako se akcije med seboj dopol-
njujejo in na kakšen način skupaj dosežejo cilj. S tem so povezani izzivi sklepanja v 
velikih jezikovnih modelih, ki jih predstavimo v nadaljevanju.

Eden izmed možnih pristopov, ki upošteva principe planiranja v UI, je upošte-
vanje odvisnosƟ  med akcijami. Nekatere akcije v planu neposredno dosežejo kake-
ga od ciljev plana. Druge akcije pa ne dosežejo nobenega danega cilja neposredno, 
njiho va funkcija je, da dosežejo pogoje, ki morajo biƟ  uresničeni, da je možno izves-
Ɵ  druge akcije v planu. Taka razlaga plana je seveda povsem logična. Navadno pa 
vsebuje preveč podrobnosƟ . Če plan vsebuje nekoliko večje število akcij, npr. nekaj 
deset, postane tako podrobna razlaga spet težko razumljiva in za uporabnika nepri-
vlačna. V tem primeru bi bilo treba za sprejemljivo razlago plan razbiƟ  v hierarhično 
strukturo, defi nirano s podcilji plana. Odkrivanje smiselnih podciljev pa je lahko zelo 
težavno. Poseben izziv je, kako poiskaƟ  take podcilje, ki rezulƟ rajo v za človeka čim 
naravnejši razlagi.

SÖÊÝÊ�ÄÊÝã Ý»½�Ö�Ä¹� ò ò�½®»®« ¹�þ®»ÊòÄ®« ÃÊ��½®«
V tem poglavju smo navedli nekatere eƟ čne vidike UI, ki naj bi zagotavljali za-

upanja vredno UI. Podrobneje smo opisali stanje v zvezi z zagotavljanjem dveh od teh 
vidikov: pravičnost strojnega učenja in razložljivost v UI. Kljub napredku na teh dveh 
področjih ostajajo odprta oz. ne dovolj raziskana vprašanja. Poleg tega je za varno 
in zaupanja vredno UI pomembno tudi, da sistem UI deluje tehnično pravilno, npr. v 
tem smislu, da zanesljivo daje pravilne rezultate. V tem razdelku opozorimo na dve 
vprašanji v zvezi z generaƟ vno UI, ki zahtevata dodaten tehnični razvoj. To sta zmož-
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nost sklepanja v velikih jezikovnih modelih ter problem, včasih poimenovan kot neke 
vrste »kanibalizem« (»self consuming models«).

En tehnični vidik, ki zadeva generaƟ vno UI kot trenutno najpopularnejši način 
uporabe UI, je povezan z zmožnostjo sklepanja v velikih jezikovnih modelih. Ta vidik 
generaƟ vne UI vzbuja dvome. Sposobnost sklepanja v popularnih jezikovnih mode-
lih vzbuja vƟ s krhkosƟ  in zelo težko je predvideƟ  napake v sklepanju. To dejstvo je 
videƟ  paradoksalno v luči dejstva, da sicer na področju UI že dolgo obstajajo zmogl-
jive in zanesljive metode za avtomatsko sklepanje (npr. Russell in Norvig 2020; Poole 
in Mackworth 2023). Vendar kaže, da uporaba že obstoječih in zanesljivih metod ni 
preprosta v okviru generaƟ vne UI. Na probleme opozarjajo razni avtorji, npr. Bubeck 
et al. (2023) in Mirzadeh et al. (2024). Prizadevanja v smeri tehničnih izboljšav (npr. 
Plaat et al. 2024) v pogledu sposobnosƟ  sklepanja so sicer privedla do izboljšav, ven-
dar so te v pogledu sistemaƟ čne zanesljivosƟ  še vedno negotove. Dober primer je po-
skus z velikimi jezikovnimi modeli, ki ga je predlagal P. van Eecke (osebna komunikaci-
ja). Modelu zastavimo dobro znano miselno uganko »volk-koza-zelje«, ki je defi nirana 
tako: Imam volka, kozo in zelje. Če pusƟ m volka brez nadzora s kozo, jo bo volk požrl. 
Podobno je s kozo in z zeljem. Kako naj prepeljem vse tri stvari varno čez reko z majh-
nim čolnom, tako da lahko vzamem v čoln s seboj le eno stvar? Tipičen jezikovni mo-
del nalogo takoj prepozna in tudi ponudi pravilno rešitev. Toda kaj se zgodi, če nalogo 
nekoliko spremenimo, npr. da je koza sita in jo zato lahko pusƟ mo samo z zeljem? 
Ali je možna krajša rešitev? Tu modeli pogosto odpovedo, naredijo napačen logičen 
sklep in predlagajo nepravilno rešitev. Mirzadeh et al. (2024) predstavijo in analizirajo 
vrsto primerov v reševanju matemaƟ čno logičnih nalog in značilnih spodrsljajev, ki 
so jih naredili jezikovni modeli. Res je, da so po tej objavi mnoge od teh Ɵ pov težav 
v jezikovnih modelih tudi že odpravili. Vendar je vƟ s, da gre bolj za lokalne popravke 
kot pa za sistemaƟ čne izboljšave sklepanja.

Opozorimo na še en tehnični vidik, ki lahko postane kriƟ čen v nadaljnjem razvo-
ju generaƟ vne UI. Gre za pojav, ki ga primerjajo z neke vrste »kanibalizmom« med 
modeli generativne UI (»self-consuming language models«). Pri tem je mišljen ver-
jeten razvojni scenarij tehnologije generaƟ vne UI, ko se bodo poznejše generacije 
modelov učile iz sinteƟ čnih vsebin, in ne naravnih, človeških besedil in drugih vsebin. 
Po tem scenariju bodo prejšnje generacije modelov generirale sinteƟ čne vsebine, ki 
bodo na spletu na voljo za učenje bodočih generacij modelov. Pri tem lahko pride do 
naključnih napak, ki postopno privedejo do poslabševanja jezikovnih modelov poz-
nejših generacij (Alemohammad et al. 2023; Briesch, Sobania in Rothlauf 2024).

Z�»½¹ç�Ä� Ù�þÖÙ�ò�
V tem poglavju smo podali pregled eƟ čnih vidikov umetne inteligence ter pod-

robneje opisali predvsem tehnične vidike dveh od njih, pristranskosƟ  in razložljivosƟ . 
Nismo pa se še dotaknili bolj globalnih vprašanj o tem, kako bo hitri razvoj UI vplival 
na družbo in človeštvo sploh. 

Očitno je, da se zelo zmanjšuje pomen mnogih poklicev, pa tudi način človeške-
ga dela v mnogih poklicih. Primer je prevajanje. Nekateri strokovnjaki UI so že pred 
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letom 1970 obljubljali, da bo kmalu na voljo kakovostno strojno prevajanje. Vendar 
se to ni uresničilo še nekaj desetleƟ j in tako je strojno prevajanje dolgo veljalo za 
morda največjo neizpolnjeno obljubo UI. Ta situacija se je dramaƟ čno spremenila v 
vsega nekaj zadnjih leƟ h. Za večino prakƟ čnih potreb je prevajanje z UI postalo dovolj 
kakovostno in dosegljivo za drobec cene človeškega prevajanja. Profesionalni človeški 
prevajalci so res pomembni le še v zahtevnih primerih, ko gre pri prevajanju za speci-
fi čne strokovne vsebine ali pa prevod zahteva literarno ustvarjalnost.

UI močno spreminja tudi izobraževalne procese in cilje izobraževanja. Ni več 
jasno, ali je treba, da pri učencih izobraževanje zagotovi sposobnost samostojnega 
pisnega izražanja, saj komunikacija poteka namesto na relaciji človek – človek vse bolj 
posredno na relacijah človek – računalnik – računalnik – človek. Zelo se spreminja 
tudi način raziskovalnega dela, od pregleda literature o sorodnih raziskavah do same-
ga pisanja člankov. Ni več jasno, kaj je pri sodelovanju človek-UI prispevek človeškega 
avtorja in kaj računalnika. 

Vendar v razpravah o teh spremembah vse bolj skrbi tudi najusodnejše vpra-
šanje: Ali bo UI »prevzela nadzor«? Za to vprašanje se v angleščini navadno uporablja 
fraza »Will AI take over?« Lahko si je predstavljaƟ , da se lahko z UI posamezniki ali 
skupine na neupravičen način dokopljejo do oblasƟ  ali si ustvarijo druge neupraviče-
ne prednosƟ  ali korisƟ . Vendar so take grožnje še vedno razmeroma obvladljive, saj 
so v očitnem nasprotju z obstoječimi zakoni in zato tudi pregonljive in jih je posledič-
no vsaj v principu možno preprečiƟ  z običajnimi sredstvi. 

Obstajajo pa verjetnejši scenariji, da UI prevzame nadzor. Taki scenariji skrbijo 
vse več strokovnjakov UI in tudi drugih področij. Geoff rey Hinton, Nobelov nagraje-
nec leta 2024 za dosežke v učenju globokih nevronskih mrež, na primer ocenjuje, da 
je to skoraj neizogibno. Meni, da bi to lahko preprečili le z usklajenim ukrepanjem ve-
čine držav sveta, kar bi se lahko zgodilo, če bi prišlo do velikega priƟ ska na vlade držav 
v tej smeri. Vendar pa ni videƟ , da bi bile vlade v zvezi s tem trenutno pod kakršnim 
koli priƟ skom. Nasprotno, zdi se, da bo UI prevzela nadzor (in oblast) na povsem be-
nigen način ob večinskem Ɵ hem odobravanju velike večine človeštva. To je scenarij, 
ki se že uresničuje. PrakƟ čno povsod prevladuje prepričanje, da UI opravlja mnoga 
dela veliko bolje kot ljudje. To je običajno formulirano tako: »Z uporabo UI smo pri 
reševanju mnogih nalog vsi veliko učinkovitejši, zato bi bilo nespametno, da pri vseh 
teh nalogah ne bi uporabljali UI.« Ta praksa, ko ljudje sami od sebe z racionalnim raz-
mislekom o sposobnosƟ  UI tej prepuščajo vse več pomembnega dela in pomembnih 
odločitev, se hitro uveljavlja na pomembnih področjih. Ta praksa velja v vse večji meri 
npr. tudi za področje pravosodja – na primer pisanje obtožnih predlogov, priprav-
ljalnih vlog in sodb. Po vsej logiki bo to kmalu veljalo, ali pa že velja, tudi za pisanje 
zakonov. Po enaki logiki bo tudi za presojo predlogov zakonov najbolj kompetentna 
UI, in neracionalno bi bilo, da bi parlamentarna telesa in poslanci sami ocenjevali za-
kone, ki jih napiše UI. Najkompetentneje jih bo ocenila UI. S tem bo človeštvo samo 
prepusƟ lo nadzor nad zakonodajo umetni inteligenci. Lahko, da bo taka zakonodaja 
boljša in učinkovitejša, vendar je vprašanje, ali si to res želimo, ali to ne vodi do od-
tujitve človeku? Po podobni logiki bo to veljalo za področja znanosƟ , umetnosƟ  in 
izobraževanja. Mnogi menijo, da je to pot brez možnosƟ  povratka.
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