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The role of duration as a cue for voicing
of sibilants in Slovenian

Saso Zivanovic*, Amanda Saksida™

Abstract

We investigate the relative contributions of periodicity and duration as acoustic cues for voic-
ing on sibilants in Slovenian. We find that (i) Slovenian exhibits the cross-linguistic tendency
for voiced fricatives to be shorter than voiceless ones, and that (ii) periodicity and duration
serve as complementary acoustic cues for identifying a sibilant as voiced or voiceless, with
the relative contribution of the two cues varying across speakers.
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Vloga trajanja kot akusti¢cnega namiga za zvenecnost si¢nikov in Sumnikov
v slovenscini

V prispevku proucujeva relativni doprinos periodi¢nosti in trajanja kot akusti¢nih namigov
za zvenecnost si¢nikov in Sumnikov v slovens¢ini. Ugotavljava, da (i) slovensc¢ina sledi med-
jezikovni teznji, da so zvenecCi priporniki krajsi od nezvenecih, ter da (ii) sta periodi¢nost in
trajanje komplementarna akusticna namiga za zvenec¢nost, katerih relativni doprinos razlikuje
od govorca do govorca.
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1 Introduction

Voicing is a phonological feature which distinguishes classes of obstruents in many
languages. On fricatives, it is acoustically realized primarily as a low frequency pe-
riodic component of the otherwise aperiodic high frequency signal. However, voiced
and voiceless fricatives are also reported to differ in duration, with voiced segments
tending to be shorter (see e.g. Cole and Cooper 1975; Baum and Blumstein 1987,
Stevens et al. 1992; Nirgianaki et al. 2011; Jongman 2024).

In Slovenian, the durational difference between voiced and voiceless fricatives
was only investigated by Jurgec (2019) and Kocevar (2024), who found that Slo-
venian follows the general tendency of voiced fricatives being shorter. However,
investigating this difference was the primary goal of neither of these papers, leading
to a less than optimal scope of the studies: Jurgec restricted his attention to stem-fi-
nal segments, and furthermore investigated a specific, peripheral dialect of Smartno,
which exhibits several phonological properties absent in other dialects; Kocevar’s
subject were pre-school children, and she focused on the [s]/[z] pair and performed
only a rudimentary statistical analysis. Furthermore, Jurgec’s analysis did not include
periodicity as an independent variable, while Kocevar’s analysis calculated it using
the arguably inferior centre of gravity method (see section 3.2).

The first aim of the study is to investigate whether the tendency of the voiced
fricatives being shorter than voiceless ones is exhibited in Slovenian as well, using
adult informants from non-peripheral dialects, inspecting the full set of phonological
environments exhibiting the contrast between voiced and voiceless obstruents, and
performing a thorough statistical analysis. We focus exclusively on sibilants as only
these form lexical voiceless—voiced pairs ([s]-[z] and [[]-[3]) in Standard Slovenian
(whereas [f] and [x] lack a lexical voiced counterpart), and also as they are easier to
study due to a stronger overall amplitude.

While we expected that Slovenian would follow the general tendency described
above, our preliminary observations also indicated that speakers differ with respect to
which property of the signal, periodicity or duration, serves as the primary acoustic cue
for voicing in their speech. The second, central goal of the study was therefore to see
whether there is any inter-speaker variation with respect to the use of periodicity and
duration as cues for phonological voicing, and whether this variation, if it exists, is cat-
egorical (in the sense that each speaker clearly favours either periodicity or duration) or
gradual (in the sense that both cues contribute towards identifying a segment as voiced
or voiceless, but that the relative contribution of the cues varies across speakers).
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2 Methods

We are using the materials prepared, recorded and annotated by Teran (2020), who
also performed a rudimentary statistical analysis of the data, under the mentorship
of the first author. His materials are publicly available at osf.io/fz95h under the li-
cence CCO 1.0 Universal. Our refined dataset is available (complete with processing
scripts) at osf.io/s6zfd under the licence CC-By Attribution 4.0 International.

Participants: The study included eight adult participants (four male, four fe-
male) aged 20 to 65 from three dialect groups (one Lower Carniolan, two Upper
Carniolan and five Styrian).! The participants were aware of the general scope of
the study and gave their informed consent to participate. They were subsequently
informed about the specific question of the study.

Materials: The participants read a short story specifically prepared to contain
many occurrences of both voiced and voiceless sibilants in various phonological en-
vironments. In an attempt to make the informants’ speech natural despite reading,
they were encouraged to not use the standard language.

Recording equipment: The informants were recorded with a mobile phone,
producing digital audio files in .wav format (mono, 44100 Hz). The low-end equip-
ment is due to the fact that the stories were recorded for a BA thesis (Teran 2020)
without a funding source. We are aware that it is customary in acoustic research to
use professional-grade recording equipment in sound-proof booths. However, given
the robustness of the speech signal (witness the human ability to understand speech
under non-ideal conditions such as noisy environment, low bandwidth communica-
tion channel and overlapping sources), it is unlikely that this invalidates the analysis
(cf. Benesty et al. 2008a; Droppo and Acero 2008).

Segmenting and annotation: The recordings were segmented and annotated
using Praat (Boersma and Weenink 2025), see Figure 1 for an example. The begin-
ning and end of each sibilant was marked on an interval tier. The sibilant boundaries
were determined by the presence of the high-frequency noise characteristic for frica-
tives. Other portions of the recording were not further segmented, but they were fully
transcribed on the same tier, marking segmental content, stress and morphosyntactic
boundaries, thereby providing the information necessary to establish the phonolog-
ical environment of each sibilant. We have also marked problematic spots such as

1 Weinclude information on gender, age and the dialect for completeness. However, as expected, these variables
turned out to not be statistically significant, so we will not discuss them in the analysis.
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performance errors or intervals where external noise made the periodicity analysis
impossible. Erroneous and error-adjacent sounds were ignored in the analysis.

The sibilant boundaries were determined by the presence of the high-frequency
noise characteristic for fricatives. However, these boundaries are not exact. Segmen-
tation depends on the gradual nature of the acoustic signal, phonological environ-
ment, speaker and random effects of the occurrence of the sound. Where clear de-
lineation was impossible, the guideline was to segment counter to the expectation of
voiceless sibilants being longer than voiced sibilants, i.e. to mark voiceless sibilants
as shorter and voiced sibilants as longer, in order to prevent the influence of possible
human bias in segmentation.
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Figure 1: Annotation view showing (from top to bottom) the waveform, spectrogram and tran-
scription. The spectrogram was drawn using Praat’s default settings except that the frequency view
range and dynamic range were set to 0-8000 Hz and 55 dB, respectively, for better visibility. The
transcription shows that sibilants, but not other sounds, were segmented out. It includes a phrasal
boundary (#) and stress marks () immediately preceding vowels.

Preprocessing: We preprocessed the data using a Python script depend-
ing on packages Parselmouth (Jadoul 2024) and TextGridTools (Buschmeier and
Wiodarczak 2023), which offer a Python interface to Praat. The script converted the
annotated recordings (i.e. the .wav and .TextGrid files) into a table (a .csv file) with
columns informant ID, segment (s [s], § [[], z [z], Z [3]), phonological environment,
segment duration, periodicity, start time and end time.
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3  Measures

We deploy two gradual measures which we expect to correlate with the binary pho-
nological category of voicing, one temporal and one spectral. The temporal measure
is simply the duration of the segment. Voiceless sibilants (and fricatives in general)
are expected to be generally longer than voiced sibilants. Periodicity is based on the
spectral features of the acoustic signal. Voiced sibilants (and fricatives in general) are
expected to have higher periodicity than voiceless sibilants.

3.1 Duration

The duration of each sibilant segment was computed as end time — start time, where

start time and end time are the manually marked segment boundaries.

The computed durations are absolute, in (milli)seconds. We have tried several
normalization methods, but as the results were comparable to those obtained with ab-
solute duration, we ultimately decided against using normalization, both to keep the
results easily interpretable and because the models using absolute values are better
suited for a potential integration in sequential processing. The attempted normaliza-
tion methods were the following:

*  Speech-rate normalization, which is frequently deployed in analyses of connect-
ed speech (cf. e.g. Bjorndahl 2022; Jongman et al. 2000). The real duration of
each recording was computed as the duration of the recording minus the manu-
ally marked pauses (an interval was interpreted as a pause if it contained only a
boundary symbol and no real segment). Speech rate was then expressed as the
mean syllable duration, computed as the real duration divided by the number
of syllables (i.e. the number of vowels and syllabic consonants). Finally, the
relative duration of a sibilant was computed as the ratio between the absolute
duration and the mean syllable duration.

*  Per-speaker normalization was supposed to account for individual differences in
articulation of sibilants which go over and beyond differences in speech rate. The
median duration of word-initial prevocalic occurrences of [s] in a stressed syllable
was computed, per informant. The relative duration of a sibilant was then computed
as the ratio between the absolute duration and this median.

*  Normalization per phonological environment. For each environment (preceding a
stressed vowel, unstressed vowel, sonorant or obstruent), we computed the median
duration of all sibilants in the environment. The relative duration of a sibilant in an
environment was then computed as the absolute duration divided by the median of
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that environment. Note that using duration normalized in this way did not yield no-
tably better models even though the duration variance between the environments
was statistically significant.

3.2 Periodicity

There are several measures based on the spectral features of the acoustic signal which
can be reasonably expected to correlate with the phonological category of voicing,
both in general and specifically for fricatives. For example, the measure called har-
monicity or Harmonics-to-Noise Ratio (HNR) directly exploits a basic articulatory
fact that voiced fricatives have two sound sources: a turbulent noise source due to the
rapid flow of air through a constriction of the airway, characteristic of fricatives, and
a periodic glottal source due to vocal fold vibration, characteristic of voiced sounds
(Stevens 2000). Acoustically, these two sound sources are reflected as the aperiodic
high-frequency and the periodic low-frequency part of the spectrum, and HNR com-
pares the amount of energy contained in these parts. Specifically, it is defined as the
logarithm of the ratio between the periodic and the aperiodic part of the signal (for
details, see e.g. Boersma 1993).

Other measures include centre of gravity (see e.g. Maniwa et al. 2009), a weight-
ed average of all frequencies in the spectrum (voiced segments, containing the
low-frequency energy produced by vocal fold vibration, are expected to have a lower
centre of gravity than voiceless sounds, where this energy is absent), intensity-based
measures (used by e.g. Chang 2008) such as the ratio of the intensities of the conso-
nant and the adjacent vowels (again, this measure is expected to be higher for voiced
consonants due to the energy produced by the vocal fold vibration, cf. e.g. Ladefoged
2003), and pitch-based measures.

The latter class of measures is widely used in phonetic research. In particular,
this holds for Praat’s Voice Report, and this was used to investigate voicing in fric-
atives by Smith (2013), Davidson (2016), and Bjorndahl (2022), among others. The
wide-spread deployment of the Voice Report and other pitch-based methods is not
accidental: Gradoville (2011) compares the validity of ten measures (including meas-
ure variants) for fricative voicing based on pitch/pulse, harmonicity, intensity and
centre of gravity, concluding that “Praat’s internal pulse-based voice report and the
low-frequency-to-total intensities ratio provide the best match for what can be ob-
served in the spectrogram and auditorily” (Gradoville 2011, p. 71).

Pitch-based measures are defined on the fundamental frequency (FO) of the signal
at each frame. Computing FO is not trivial, and several FO determination algorithms
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exist. Jesus and Jackson (2008, p. 15) compared eight of these implemented by open

source software, and found that Praat’s algorithms (Boersma 1993) provided the most

accurate fundamental frequency, while being a close second best for voicing decisions.

Given the widespread usage, ready availability and positive reviews, we also de-
cided to deploy Praat’s pitch detection algorithm. Specifically, we used the autocor-
relation variation, recommended for cases involving vocal fold vibration in the Praat
manual. We have, however, decided against using the often deployed Voice Report.
For one, Voice Report is based on the pitch contour found by Praat’s path finder
algorithm, which works non-locally, by attempting to find the best path through the
pitch candidates. Two, Voice Report outputs the fraction of unvoiced frames, and is
therefore binary at the level of an individual frame, interpreting it as either voiced
or unvoiced. We believe this is why Voice Report exhibited both the floor and the
ceiling effect with our data. The periodicity measure we developed uses the raw re-
sults provided by Praat’s pitch detection algorithm (i.e. it does not rely on the pitch
contour), and avoids across-the-board attenuation effects by being gradual at the level
of each frame, computing the periodicity of a segment as a mean of the periodicity of
the frames rather than the percentage of voiced frames.

In more detail, the periodicity of a segment was computed to be a unitless quan-
tity between 0 and 1, where 0 indicates a fully voiceless segment, and 1 indicates
a fully voiced segment. It was estimated using an algorithm based on Praat’s pitch
analysis. Each recording was first processed using Praat’s raw autocorrelation meth-
od to produce a pitch object (.Pitch). We have used the default arguments for raw
autocorrelation, except the following:

»  The pitch floor was lowered to 50 Hz (default: 75 Hz) to make sure that the pitch
could be computed with the same settings for all informants.

*  Thevoicing threshold was lowered to 0.25 (default: 0.45). This setting was found
to better suit the analysis of fricatives (the default is geared towards measuring
intonation and vocal fold vibration in the production of vowels).

The periodicity of a segment was defined as the mean periodicity of all frames
of the segment (the frame duration of the pitch object was the default 10ms). Each
pitch frame consists of an ordered list of candidates, each determined by frequency
and strength (a number between 0 and 1, indicating the ratio between the value of the
autocorrelation at the time lag corresponding to the frequency, and the global maxi-
mum of autocorrelation at time lag 0). A pitch frame may also contain a candidate of
frequency 0 Hz and strength 0, which is interpreted as a “voiceless candidate”, i.e. it
represents the possibility that the frame is voiceless.



392  Civ, &iv, §e sem v

The periodicity of a frame was defined as the strength of the first voiced candi-
date with a frequency below a certain threshold; if there was no such frame, the pe-
riodicity was set to 0. We have limited the candidate frequency because the periodic
part of the spectrum corresponding to the vocal fold vibration is of low frequency,
comparable to that of the pitch. The threshold was set to 1.5 times the median pitch
of the entire recording. The median pitch was calculated using Praat’s “Get quantile”
function with the quantile parameter set to 0.5 to yield the median. (We computed the
median rather than mean because Praat easily marks some stretches as having a pitch
much higher than the actual fundamental frequency. Using the median is a quick
method of disregarding these wrongly assigned pitches.)

Table 1: The Likert scale used to grade the perception of periodicity of segments in isolation
(columns 1 and 2), cross-tabulated with their normal perception in the context of other segments
(columns 3 and 4).

Perceived in isolation as Perceived normally as
value | interpretation voiceless voiced total
1 clearly voiceless 194 1 195
2 most likely voiceless, but not a perfect example 411 20 431
3 unclear 169 87 256
4 most likely voiced, but not a perfect example 11 155 166
5 clearly voiced 1 188 189
total 786 451 1,237
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Figure 2: Correlation between the auditory perception of voicing in isolation (see Table 1) and
the estimated periodicity, per informant. The plot titles include Spearman’s rank correlation coef-
ficient (S); the coefficient for the entire dataset is 0.75.



Sa3o Zivanovi¢, Amanda Saksida: The role of duration as a cue for voicing of sibilants ... 393

Several variations of the algorithm were tried out to find the parameter values,
including the candidate frequency threshold factor of 1.5, and candidate selection
method (only the first candidate counts) under which the estimates were found to
largely agree with the authors’ auditory perception of the amount of voicing of the
segment played in isolation (to minimize the effect of phonological environment). To
check the strength of this correlation, we annotated each target segment ([s], [[], [z],
[3]) in the recordings with our auditory perception of the amount of voicing of the
segment played in isolation.? The annotation results are shown in Table 1, and the
resulting correlations with the computed periodicity are plotted in Figure 2 for each
informant. The plot titles include Spearman’s rank correlation coefficient of the cor-
relation for each participant. We see that the correlation is (positive) strong for both
for the entire dataset and for all informants, except informants 11 and 16, where it is
weak and moderate, respectively.

4  Results

Preprocessing yielded 1,237 target segments (578 [s], 208 [[], 301 [z], 150 [3]), dis-
tributed across phonological environments as follows: preceding a stressed vowel
324, an unstressed vowel 429, a sonorant 157, an obstruent 327 (we disregarded
phrase-final segments, as they are all voiceless due to final devoicing). The number
of target segments produced per informant: 158, 150, 158, 156, 152, 155, 155, 153.

The box plots in Figure 3 show the values of segment duration and periodicity for
the entire dataset. The voiced segments tend to be shorter (#1208.79) = —21.55, p <
0.001) and more periodic (#(617.12) =29.76, p < 0.001) than the voiceless segments,
and the differences in duration and periodicity between places of articulation ([s]:[[]
and [z]:[3]) are not statistically significant. Inspecting the scatter plot in Figure 4a
(ignore the lines for now), one can see that duration and periodicity are moderately
negatively correlated, the Pearson correlation coefficient is -0.45.

2 The annotations were performed individually by both authors. The inter-annotator agreement was almost per-
fect, with Cohen’s kappa coefficient k = 0.86 + 0.01, mean absolute score difference of 0.55 (¢ = 0.59) and
maximum absolute score difference of 2. Table 1 and Figure 2 show merged scores. Instead of averaging the
scores, we took the score that was closer to the unclear score (3), e.g. we merged 1 and 2 into 2, and 3 and 4 into
3; in the rare cases where we scored on the opposite sides of unclear, we merged into the unclear score, i.e. we
merged 2 and 4 into 3.
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Figure 3: Box plots of duration (left) and periodicity (right) per segment.

The data was explored in detail by fitting Generalized Linear (Mixed Effects)
Models (GLM(ER)),* which we evaluated using the following metrics: sensitivity
(the rate of detecting voiced segments), specificity (the rate of detecting voiceless
segments), F1 score, and area under curve (AUC). The latter metric is based on the
receiver operating characteristic curve (ROC). The proportion of training data was

50%, and each test was iterated 1,000 times.

Table 2: Test scores for GLM models

formula sensitivity specificity F1 AUC
v~p 0.74 £0.08 0.92 +0.05 0.79 +£0.05 0.87 £0.04
v~d 0.59+0.14 0.82 £0.07 0.62 £0.07 0.80 +£0.04
v~p+d 0.75 +£0.07 0.91 £0.04 0.79 £ 0.05 0.91 £0.03
v~pxd 0.76 £ 0.08 0.90 +£0.06 0.79 £ 0.05 0.92 £0.03
v~pte 0.74 £ 0.08 0.93 £0.04 0.80 £ 0.05 0.89 +£0.04
v~d+e 0.74 £0.08 0.90 £ 0.05 0.77 £0.06 0.89 £0.03
v~pt+d+te 0.80 +0.08 0.93 £ 0.04 0.83 £ 0.04 0.94 +£0.02
v~pxd+e 0.82+£0.07 0.93 +0.04 0.84 £0.05 0.95+0.02

Table 2 shows the model scores for models whose classifications are depicted in
the scatter plots in Figure 4. Periodicity alone (v ~ p) is already quite predictive of
voicing, while duration (v ~ d) is less so. Combining the measures, either with (v ~ p

3 Wealso performed the basic analysis using Support Vector Machines (SVM) and K-Nearest Neighbours (KNN)
models. The differences were negligible. We only present the results obtained with the GML(ER) models, as
they are the easiest to interpret and visualize.
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* d) or without (v ~ p + d) the interaction term, yields somewhat better performance,
but as shown in the bottom part of the table, duration only truly develops its predic-
tive power in tandem with phonological environment (e). (The environment term is
also only effective in the presence of duration, cf. model v ~ p +e.)
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Figure 4: Scatter plot of duration vs. periodicity (the two plots are the same), with predictions of the
GLM models. Voiced and voiceless segments are printed in black and grey, respectively. The divi-
ding curves and lines show the classifications predicted by the GLIM models at the cutoft probabili-
ty of 50%. Voiced and voiceless segments are predicted to lie above and below the lines, respectively.
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Figure 5: Scatter plot of duration and periodicity, with the predictions of the GLMER models
v~ p+(1|ID) (black line) and v ~ p + d + e + (1 | ID) (grey lines).
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Table 3: Test scores for GLMER models

formula sensitivity | specificity F1 AUC success
v~p+(1]|ID) 0.78£0.09 | 0.94 £0.04 | 0.83 =0.05 | 0.95+0.02 | 1000/1000
v~p+d+e+(1]ID) [ 0.88+0.07 | 0.95+0.04 | 0.89 £0.04 | 0.97 £ 0.02 | 1000/1000
v~p+e+(d|ID) 0.88£0.07 | 0.94+0.04 | 0.89 £0.04 | 0.97 £0.01 | 775/1000
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Figure 6: Scatter plot of duration and periodicity, with the predictions of the GLMER model
v~p+e+(d|ID).

The above test results agree with those of the Type II ANOVA test performed on
the full GLM model v ~ p x d + e + g: (1) = 306.66 (p < 0.001), °, (1) = 206.11
(p <0.001), y*,(3)=195.18 (p < 0.00l),ng(l) =3.68(p= 0.06),)(2[,:[1(1) =17.38(p
< 0.001). Note that although the interaction term p : d is significant, its p-value (3.07
x 107°) is much larger than the p-values of other significant terms (< 4.65 x 1074),
which correlates with the fact that models with the interaction term (p * d) in Table 2
perform no better than the models without it (p + d). We therefore take the simpler
and computationally less intensive p + d variant as the basis for further models.

Our central research question is whether speakers exhibit individual differences
in realization of voicing via duration, and whether such differences, if they exist, are
categorical or gradual. Intra-speaker differences can be investigated using mixed-ef-
fect models with random effects for the informant.* Most often, we find researchers

4 In fact, not using mixed-effect models with random effects for the informant for our data would amount to vio-
lating the independence assumption.
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use only random intercepts. In our case, this leads to model v ~p +d + e + (1 | ID)
(;(ZP(l) =176.93 (p < 0.001), x> (1) = 100.53 (p < 0.001), x*,(3) = 97.06 (p < 0.001))
depicted in Figure 5 and evaluated in the upper half of Table 3. And while this is our
best performing model — and incidentally, note that even the mixed-effects model v
~ p + (1] ID) featuring only the periodicity term performs excellently — it cannot an-
swer our question, as it includes duration as a fixed term, which by definition cannot
vary between individuals.

The model allowing the investigation of the intra-speaker differences in deploy-
ing duration must thus include duration as a random effect term. The random slope
model v ~ p+ e+ (d]|ID) (sz(l) =175.81 (p <0.001), *,(3) = 91.8 (p < 0.001)) is
shown in Figure 6 and evaluated in the lower part of Table 3.° The model arguably
performs just as well as our best model v ~ p + d + e + (1 | ID), even if the training
does not always converge (see column “success”), presumably due to insufficient da-
ta.® The slopes of the classifier lines differ across informants, indicating intra-speaker
differences in the use of duration for realization of voicing. If all classifier lines were
(nearly) horizontal and vertical, corresponding to a small and large duration coeffi-
cient, respectively, the intra-speaker variation would be categorical. However, the
observed minor variability of the slopes indicates gradual differences.

5 Discussion

The statistical analysis answered the questions posed in the introduction: Slo-
venian voiced sibilants are statistically significantly shorter than their voiceless
counterparts, and speakers exhibit gradual differences in realization of voicing on
sibilants. However, the most challenging part of the analysis was not the statistics,
but implementing the measure of periodicity. The evaluation of the developed pe-
riodicity measure (see Figure 2) indicates that the measure is good but not perfect,
with informant I1 standing out as the most critical. The question is whether one can
define periodicity in a way which correlates even better with the perception data, and
whether a better measure would improve the models even further (perhaps so that
they could be used as a component of an automatic speech recognition system).

5 Alme4 GLMER model in R automatically includes the random intercept, i.e. d | ID is equivalent to 1 + d | ID.

6  Failure to converge is not necessarily indicative of a useless model, see https://www.rdocumentation.org/
packages/lme4/versions/1.1-37/topics/convergence.
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Figure 7 (ignore the model predictions for now) and Table 1 in section 2 offer a
glimpse into how much a periodicity measure can possibly improve, and also hint at
the general form the improvement should take. First, the cross-tabulation in the table
makes it clear that there are limits to identifying segments in isolation: out of a 1,237
target segments, 1 +20 + 11 + 1 = 33 segments (3%) were misheard and 169 + 87 =
256 (21%) segments remained unidentified. Second, mishearings were systematic:
for a given speaker, the mishearings were either nearly all voiceless or nearly all
voiced. Third, our periodicity measure is the least successful with the informants who
were most often misheard (I1 and 16). The special status of these informants, and 11
in particular, is clearly visible when one compares the scatter plots in Figures 6 and 7.
We interpret the situation as a signal that our periodicity measure works well for the
majority of speakers, but that some speakers require a different approach — presum-
ably because the spectral properties of voicing in their speech are different in some
way. Summing up, we started the research with the hypothesis that there might be a
categorical difference between speakers in terms of use of duration in the realization
of voicing. The data showed that the intra-speaker difference is gradual rather than
categorical. However, the above discussion makes one wonder whether the categor-
ical difference exists after all, and if it is related to periodicity rather than duration.

To see whether an improved measure of periodicity would improve model pre-
dictions, we defined a fake measure of periodicity (p') partially based on the percep-
tion data (%). The idea is that this human-assisted measure should be near perfect
in the sense of using all the available segment-internal spectral information, so that
models fitted to the data using this measure could serve as the upper limit to what can
be achieved by statistical analysis of the spectral and temporal information present in
the acoustic signal of the segment. (Presumably, other linguistic modules and lexicon
could fill in the remaining gaps in recognition.)

We did not use the perception data as the fake measure directly. This (categori-
cal) data is valued on a Likert scale from 1 to 5, and while we could linearly translate
the Likert values to the interval [0, 1] by p’ = (h — 1) / 4, this would produce a discrete
measure. We therefore decided to define a measure based on both the perception data
h and our computed periodicity p. One option would be to simply multiply them (p'
=ph', where i’ = (h— 1)/ 4), but this would give too much weight to p; for example,
a segment judged clearly voiced (2’ = 1) but computed to be completely aperiodic (p
=(0) would have p’ = 0. We defined the measure in a step-wise fashion, as p’ = (h + 1
+p)/5:term (h + 1)/ 5 zooms into one of the five equal-length intervals partitioning
[0, 1], and term p / 5 adds some variability inside this smaller interval.
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The fake periodicity measure was used to produce the models depicted in Fig-
ure 7 and evaluated in Table 4. Comparing Tables 3 and 4, we observe the slightly
improved performance of all models (the simplest model v ~ p + (1 | ID) improves
the most, and sensitivity is the score with the highest increase). It is not surprising
that the improvements are modest, as the models also fitted the real data extremely
well, and the scores of model v ~ p +d + e + (1 | ID) do indeed seem to be the rea-
sonable upper limit we were trying to estimate.
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Figure 7: Scatter plot of duration and fake periodicity, with the predictions of the GLMER
models v ~ p + (1 | ID) (horizontal grey line), v ~ p + d + e + (1 | ID) (black lines, parallel

across informants), and v ~ p + e + (d | ID) (diagonal grey lines).

Table 4: Test scores for GLMER models with the fake periodicity measure

formula sensitivity | specificity F1 AUC success
v~p+(1]|ID) 0.88£0.08 | 0.95+0.04 | 0.90£0.04 | 0.98 £0.01 | 995/1000
v~p+d+e+(1]ID) | 0.92+0.06|0.96+0.03|0.93+0.03|0.99+0.01 | 986/1000
v~p+e+(d|ID) 0.92+£0.06 | 0.97+0.03 | 0.93+0.03|0.98+0.01| 725/1000
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6 Conclusion

Slovenian voiced sibilants are statistically significantly shorter than their voiceless
counterparts. The duration of sibilants is moderately negatively correlated to their pe-
riodicity, a spectral measure of voicing. Periodicity is an excellent predictor of voic-
ing, especially in mixed-effect models with a random speaker intercept. However, the
periodicity—duration correlation is weak enough that duration can act as a redundancy
measure. Adding a duration term improves model performance, especially when ac-
companied by the phonological environment term, which has no effect in the absence
of duration. Inspecting and evaluating the models we found that periodicity and du-
ration serve as complementary acoustic cues for identifying a sibilant as voiced or
voiceless, with the relative contribution of the two cues varying across speakers.
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